CS265 Final Project: LSM-tree gradient descent

Optimizing Memory Allocation Between Memtable, Cache, and Bloom Filters

Mali Akmanalp
Harvard University

mea590@g.harvard.edu

1. INTRODUCTION

Tuning data systems is hard. Even for systems like key-
value stores that only support the most minimal APT (put
and get), the possibilities are often overwhelming. The
developers of RocksDB [4], a popular and powerful LSM
tree-based key-value store, freely admit that “configuring
RocksDB optimally is not trivial,” and that “even [they]
as RocksDB developers don’t fully understand the effect of
each configuration change” [5]. Additionally, the optimal-
ity of a database configuration depends on that database’s
workload, which is rarely known in advance. There has been
recent work [3] in determining the optimal memory alloca-
tion for bloom filters in LSM trees in terms of worst-case
analysis and with respect to a number of basic workloads,
but realistic key-value store workloads, which have been an-
alyzed e.g. for Facebook [11], exhibit enormous complexities
with respect to time, skewness, and key repeatability which
have not been factored in.

Our goal is somewhat ambitious — building on Monkey [3],
we seek to optimize not just bloom filter memory allocation
but memory allocation across the entire LSM tree; that is,
given a total amount of memory M, we want to choose an
amount of cache memory M qyche, buffer/memtable memory
Miapie, and bloom filter memory Mpioom such that M =
Meache + Miavie + Mpioom and disk accesses across the LSM
tree are minimized. Furthmore, we want to perform this
optimization with respect to a diverse set of workloads that
we model as stochastic processes.

2. STOCHASTIC WORKLOADS

To benchmark our results, rather than generating work-
loads which are fixed sets of queries, we define a diverse
set of random workload generating classes. Each class is
highly configurable and often hierarchical in their probabilis-
tic models. From them, we randomly regenerate workloads
with similar high-level characteristics but different queries.
This strategy does not necessarily guarantee realism but
helps us avoid “overfitting” to a particular set of queries.
The workloads we define contain many simple distributions
that are standard in the literature, along with more com-
plex, time-varying workloads (inspired by [11] and [2]) that
attempt to mimic more realistic settings.

2.1 Simple workloads

Uniform queries will be drawn uniformly from keys k €
{0,1,..., K}, where K is a maximum key (that we explore
varying). The case of uniformly distributed queries is often
one in which the cache is unhelpful (unless Mcoche > K),
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but in practice may be unrealistic. Nevertheless, this is the
scenario that many analyses assume for calculations of big-O
complexity.

Round-Robin queries are drawn deterministically using
ki = (i mod K), i.e. we iteratively draw each key in se-
quence, then repeat. This is also a bad case for our key-
value store in its default configuration; the fact that a key
has been recently written or read is actually a contraindica-
tion we will access it again.

80-20 queries (which are considered in [3]) are drawn such
that 20% of the most recently inserted keys constitute 80%
of the lookups. This is a simple model we will be able to
analyze analytically that exhibits more realistic skew.

Zipf queries are distributed according to a Zipf or zeta
distribution, where the probability of a given key k is 1%57
where s € (1,00) describes the skewness of the distribu-
tion; in the limit s = 1, it is uniform with K = oco. Zipf-
distributed queries are considered in [7] as another simple
proxy for realistically skewed queries.

For all the above queries, when we draw a particular key
for the first time, we will insert it into the database as a
write, and subsequently we will either look it up or update
it with probability w.

Examples of these workloads can be seen in the first row
of Figure 1.

2.2 Complex workloads

Discover-Decay queries are distributed according to the
following stochastic process, inspired by the Chinese Restau-
rant process [1] but with time decay: with every passing time
step, we draw a number of reads n,., writes n.,, and updates
n,, assuming queries arrive according to Poisson processes
with configurable rates:

ny ~ Pois(Ar)
Ny ~ Pois(Ay)
Ny ~ Pois(Ay)

Poisson processes are a reasonable choice for modeling
the arrivals of database queries or in general the number
of events that occur in a continuous time interval, and have
been shown to be appropriate for database queries [10, 8, 9];
they are the model that emerges if we make no special as-
sumptions (i.e. maximum entropy) about the length of time
between queries. A more realistic model might increase and
lower the rate to mimic the diurnal and weekly cycles seen
in [11], but especially on short timescales, Poisson processes
should be much more realistic than assuming a uniform ar-
rival rate (which we did above).
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Figure 1: Example workloads we generated for benchmarking. The first row contains simple workloads where
the distribution of key popularities does not change over time, and where the read/write ratio is a uniform
probability. The second row contains Discover-Decay workloads, which add/read/update keys according to
Poisson processes and simulate popularity decays over time. The third row is a modified version of Discover-
Decay that adds a periodic signal to the decaying popularity with a configurable period and cusp sharpness.
Blue dots represent reads and green dots represent writes or updates.

Once we’ve drawn our n,, new keys k;, we assign them an
initial popularity

0; ~ Beta(ag, bg)
with a random decay rate
i ~ Beta(ay, by),

which is the factor by which they exponentially decay each
subsequent time step. At any time ¢, the popularity of
each key is given by p(ki,t) o 6;v. ", where t; is when
the key was inserted. We use these time-dependent popu-
larities to draw each of our n, reads and n, updates from
Mult({p(ki, t)}). Examples can be seen in Figure 1.
Periodic Decay workloads are a simple modification of
the Discover-Decay model where p(k;,t) now depends not
only on the decay rate =y; but also on a periodic function of
the key’s age t — t;. To mimic the combination of exponen-
tial decay and sharp periodic peaking we see in [11] (from
which we reproduce the relevant plot in Figure 2), we mul-
tiply Hz-'yf ~' by an inverse cycloid function with period T,
clamped from 0 to 1, and taken to a configurable power (to
make the cusps sharper or duller) that we call the cycloid’s
cuspity. Examples can be seen in row 3 of Figure 1.
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Figure 2: Key reuse histogram from [11] showing
the popularity of keys requested multiple times as a
function of the number of hours since the previous
access for a number of real key-value store workloads
from Facebook. Note the overall trend of exponen-
tial decay with a sharply periodic subsignal on a
24-hour scale (for most workloads).



3. THE WORKLOAD MATTERS

The first important takeaway is that how much memory
we should allocate to the cache, buffer, and bloom filters is
highly dependent on the workload.

To investigate this, we wrote Python code to simulate how
an LSM tree with a variably sized cache, memtable, disk lay-
ers, and bloom filters performs for an arbitrary sequence of
queries [6]. In particular, we count disk accesses (the main
performance bottleneck for an LSM tree) as well as statistics
about the utility of each component. For the experiments
below, we started from an empty LSM tree, but future ex-
periments should pick a sensible intermediate state.

Figure 3 shows how the number of disk accesses (on a log
color scale) changes as we run a full simulation along differ-
ent allocations of 8000 bytes (corresponding to the amount
of memory needed to store 1000 64-bit entries, and assum-
ing a page size of 2048 bytes), with about 50000 queries for
each simulation. We allocate these 8000 bytes using a 400-
byte grid spacing along the simplex of possible splits, and
test using both baseline (equal bits-per-entry) and Monkey
bloom filter allocations [3].
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Figure 3: Sets of simulation results for three vari-
ants of the Periodic Decay workload (shown in the
top-left corner of each set of plots). The minimum,
plotted as a yellow dot, is determined by exhaustive
search over the simplex of possible allocations. Note
how the best allocation is highly dependent on the
workload, and how Monkey always outperforms the
baseline allocation.

We will include results for many more workloads than just
the Periodic Decay variants shown in Figure 3, but even just
those three are sufficient to illustrate a variety of takeaways.
For the top plot, whose workload consists primarily of reads
of very recently added keys but with a few old popular keys
recurring at intervals, we obtain the best results by allocat-
ing most of our memory to the buffer (for reading recently
added keys), but saving a little bit for the cache (for the old
but popular recurring keys). The bloom filters are actually
useless to us, and as such, it does not matter whether we
use Monkey or not to allocate our bloom filters.

The middle plot shows a case where old keys recur in
greater numbers (because the decay rates are lower), so the
cache alone does not suffice, although it still helps for the
most popular old keys (since there is still a spread). Now
we transition into a regime where the bloom filter also helps,
but only when we use Monkey to allocate memory optimally
across the filters. The baseline allocation is not quite good
enough to move the optimum away from the pure cache
and buffer configuration (and the optimization landscape is
starting to look non-convex).

The bottom plot, which has a much higher periodic fre-
quency along with slow decay, shows non-convexity or multi-
modality in the Monkey results; one local minimum involves
allocating a significant amount of memory to the cache and
less to the buffer, while another local minimum allocates
memory to the buffer (plus slightly more bloom) and much
less to the cache. The multimodality makes sense, because
our LSM tree affords us multiple strategies for avoiding disk
accesses on popular keys; one is to focus on recent keys,
which are more likely to be popular, and another is to focus
on keys which remain popular for a long time. Interestingly,
in the baseline case, the cache strategy no longer works well,
perhaps because it implicitly relied on the bloom filters in
some way. Note also the discontinuities that occur along the
buffer direction, which are a result of the number of layers
sharply changing with the buffer size.

These results demonstrate (1) there are many qualita-
tively distinct regimes of optimality in an LSM tree, (2)
all components can be important, (3) Monkey consistently
outperforms the baseline bloom filter allocation, even on
fairly exotic workalods, and (4) due to the possibility of non-
convexity, globally optimizing memory allocation might be
challenging.

However, the resulting surfaces suggest that at least for
some workloads, local optimization (similar to gradient de-
scent) can be effective for moving toward an optimal mem-
ory allocation without requiring that we iterate through all
possibilities. Additionally, we note that to compute itera-
tive local optimizations, we do not require that the entire
workload be known a priori. Rather, we can collect mini-
mal statistics throughout the query execution process and
use these to estimate the current value in saved I/Os any
marginal byte of the cache, bloom filters, or memtable is
providing. To formulate the useful statistics, we turn to
modeling.

4. MODELING

We first consider the case of a uniform query distribution
and then show how the formulation can be generalized to
any distribution with an empirical trace.

4.1 Uniform query distribution



Assuming we have

e N items in total DB

e [ size of an entry in bits

e M total memory

e ). memory allocated to cache

® Mpyuffer memory allocated to buffer

e B size of the buffer in pages

e P entries that fit in a disk page

e T ratio between layers of LSM tree such that
e L1=T%B*P,L2=T%+Bx P, and so on,

then we can solve for L the total number of layers required
to store all the data:

1-TF
Bx P =N
* P x T
N(T = 1)
L =171 — +1
roe (M55 1)1

The average cost of a write remains the same as for the
basic LSM tree case:

it t =1 N
write cost = log ——
gr BP
The average cost of a read must be considered probabilis-
tically over all possible locations of the read item, in this
case assuming a uniformly random distribution of reads:

e Probability that read is in memtable = p(MT) = 2

e Probability that read is in cache = p(cache) = MCT/E

e Probability that read is in L1 but not in cache = p(L1)

Bx PxT — BxL+T x M./E

N—-Bx*P

N

where the numerator is the number of items B PxT that
are in the first layer minus the proportion of items from that
layer that are probabilistically in the cache already:

BxPxT
N—-BxP

and finally where the N — B % P comes from the fact that
items already in memtable (LO) are not allowed to occupy
the cache.

Therefore, given a uniform query distribution, the full ex-
pected cost in disk reads of a read is

x* M./E

L
E[Cluniform] = p(MT) % 0 + p(cache) * 0 + Zp(Li) * 4

=1

B Px Tt — BrPsT! x* M./FE
*

L
— E N—BxP i
N

4.2 Bloom Filters

The previous analysis hasn’t yet accounted for the pres-
ence of Bloom filters, which reduce the likelihood we will
unnecessarily access a lower layer. For a Bloom filter of
k bits with h independent hash functions hi, he,...hn, the
probability that a given bit is still set to 0 after inserting n
keys is

1n*h
1— =
(-7

Then the probability of a false positive is

(1—(1— 1))~ (1 -

—hn/k\h
k € )

We can minimize this over h to find the optimal number of
hash functions, which is & = In(2)* £. Assuming that this is
the number of hash functions h we will use, the probability
of a false positive as a function of the number of bits is then

_ k 1 k k
1— In(2)xk/nxn/k ln(2)*5 _ (= In(2)* % ~ (.6185)n
(1-e ) (3) (:6185)
For an item in any any level L; of the LSM tree with ¢ > 2
we can reduce the expected cost of accessing that item from
i by the number of Bloom filter negatives at any level j < 3.

Then the expected cost of accessing an item at L; is

1—1

> op(fp) 141

=1

Where p(fp;) is the probability of a false positive for that
key at level j and 1 is the cost of actually accessing the item
at level i assuming fence pointers that lead us to the correct

page.

4.3 Expected Cost with Bloom Filters - Base
Case
Assuming a random distribution of reads, we now consider
also the probability that a bloom filter allows us to ignore a
level:
Expected cost of read for an item in the tree =

L i—1
p(mt) « 0+ p(cache) + 0+ > p(Li) * > p(fp;)

L
Expected cost for a null result read = 3", p(fp;)

Given a total memory allocation M, the total number of
bits we can allocate to bloom filters is M — M. = Zle m;
Then the total formula for the expected cost of a read in the
tree is:

I BxPxT'—BrP=T%  \

E[C} — Zi:1 N;{B*P

: Ki('m%)%) +1

j=1

(1)

Whereas with a given percentage of null reads in the work-
load prui:



BxP#Ti— BxPxT% o\
E[C] = (1 _pnull) EiLzl M N;[B*P* °

i—1 -
: [( (.6185)B*P1T1> +1
j=1

BP+Tt— BePTl  pfo /g

L

+ Dnuit Zp(fpj) (2)

j=1

Eld = 3,2, (1 = pnun) N
(Z(.6185)13:;1Tj> + 1| + ot -p(fri)  (3)
j=1

4.4 Gradients of Cost with Bloom Filters - Gen-
eralized Distribution

4.4.1 Cache Gradient

Note that in the above, the workload specific factors are
the probability that a read is at any given level and the re-
lated probability that any given item from a level is already
in the cache. To compute an empirical estimation of the
probability that any given item is in a layer but not already
in the cache, we can simply keep statistics on the total num-
ber of times a key was found in that layer divided by the
total number of (non-null) read queries executed. Then we
can consider the following simplification:

Eld = £, (1= poan) [p(L) — %5 + Me/E]

: Ki(.ms)a*rgiw> +1

j=1

+ Pounr - p(fpi)  (4)

Taking the derivative with respect to the number of entries
in the cache, M./E, we get

L
Z _(1_pnull)p(Li)/(N_BP)'

i=1

l_l ’"Lj
<Z(.6185)B*P*Tj > +1

j=1

Which is just the average cost of a read throughout the
tree. Then, to keep statistics on how valuable we expect the
cache to be, we maintain statistics on the average cost of
every read performed in the window of interest.

4.4.2 Bloom Filter Gradients

Because the memory allocation problem is discrete any-
way, we consider the value of the bloom filters as a finite
difference, that is the approximate value of any marginal
bloom filter bit at layer k will be E[c|my + 1] — E[c|mg]. In
this computation, all terms in the sums drop out except for
those concerning m;, and we are left with:

.{{((.6185);;‘;—1;) +1] _ [((.6185)%) +1]}

T Pruit (('6185) BxP=T1 — (.6185) BxP+T7 > (5)

Rearranging terms, we get:

Zf:k [(1 _pnull) |:p(Lz) - (AI;(_Lé)P) * ML/E:| +pnull:|
mp+1 m
. ((.6185)B*]’;*Tj — (l6185)3*pfﬁ> (6)

Where this is exactly the number of times the given bloom
filter is accessed times the difference in the theoretical false
positive rates given memory allocations m; and m; + 1.
Then, to keep statistics on how valuable we expect any given
bloom filter to be, we maintain statistics on the number of
times every bloom filter was accessed in the window of in-
terest.

4.4.3 Buffer Gradient: Gets

To estimate the additional value of any marginal memory
in the buffer with respect to reads, we must make a number
of simplifications, as B, the number of pages in the buffer,
factors into every term in this equation. Further, the inter-
action between B and most of the terms is not available in
closed form, in general. Rather, the critical terms P(L;) we
are empirically estimating. Then, for reasonably large values
of N and B, we will assume that the bloom filter false pos-
itive rate stays approximately the same, as does the value
of the cache. Then, we consider only the change in I1/Os
occurring from the altered probability of any given element
occurring in any layer as a result of more elements being
in the memtable. We can provide a simple estimate of this
by assuming that any items we add to the memtable would
have otherwise occurred in L1, and in the resulting cascade,
T* times that number of items will be moved up into each
layer L; from the layer below.

Then, an appropriate estimate of how useful any addi-
tional space of memory in the memtable is for reads is simply
the resulting change in p(L;) for each layer (that is, the num-
ber of hits we expect to see on the newly added elements)
xfp; for any layer i # 0, as the original cost of accessing
that element was 22:1 fpj + 1, and the new cost of access-
ing is 23;11 fpj, the difference between which is just fp;.
For i = 0, the buffer itself, the expected savings per hits is
exactly 1, as the item will be moved from having an access
cost of 1 to 0. To estimate how many additional times L1
would be accessed if we instead allocated the final portion of
the memtable to L1, we keep statistics on how often the final
spots of the memtable were accessed in a read. In practice,
these spots are accessed only very infrequently, as the buffer
is accessed only a handful of times at this stage before being
flushed. This statistic might be more helpful on a system
with constant compaction rather than a full layer flush. For
the rest of the layers, we simply assume the same hit rate
per key as measured over the existing keys on any level and
multiply by the number of elements we will be adding to cal-
culate the expected accesses to the new keys on each level.
We then multiply by the empirical rate of bloom filter false
positives on the level.

4.4.4 Buffer Gradient: Puts

For the buffer, we must additionally consider the saved
update/insert I/Os.

. N
write cost = logTﬁ

Taking the derivative with respect to BP, the number of



items in the buffer, we get ﬁ In discrete terms, this evalu-

ates to logT%.

Unfortunately, this simplification only works if we can as-
sume that memory is being allocated in page-size chunks and
that the workload has no duplicates. In practice, the number
of I/Os associated with reading and writing throughout the
merging process is a stepwise function that depends on page
size, as reading or writing one element from or to a page has
the same I/O cost as reading or writing a full page. To sim-
plify our analysis of the page size write savings, we consider
only a ratio of 7' = 2, and we begin by addressing the case
wth no duplicates.

With no duplicates, the final number of elements at any
level of the tree is a deterministic function of the number of
elements inserted as well as the layer sizes. Then considering
the empirical number of items inserted into the buffer as
well as the size of the original buffer, we can solve for the
theoretical final structure of an alternate LSM tree that had
a buffer of size BP + 1.

Additionally, given the number of elements on any given
layer, no duplicates, and an original buffer size BP + 1, we
know the number of times each T% x (BP 4 1)-size chunk on
each level will have been read and written given the current
fullness of the layer. We can then multiply these numbers
of known chunk reads and writes by the ceiling of the size
of those possible chunks (which, with ratio T' = 2 will be
T' % (BP +1) and T% * (BP + 1) % 2) divided by pagesize,
P. This gives us a more realistic number in which additions
of less than a pagesize of memory are not helpful in I/O
savings.

Comparing the read and write costs of this theoretical tree
to the empirical reads and writes accesses of the existing tree
gives us an expected I/O savings related to updates for the
larger tree.

We consider additionally the fact that I/O savings are in
general lessened by the number of duplicates inserted, as
duplicates will not be merged the full length of the tree. To
take this into account we also keep a statistic for the total
number of duplicates merged over the window of interest per
layer and use this to calculate the percentage of duplicates
removed relative to total keys at each level. This factors
in in several places. First, when computing the theoretical
allocation of keys in the final tree, we consider the total
number of items that would have come in to the memtable
from the empirical count and adjust this at each layer by
the percentage that are expected to have been removed as
duplicates. Further, when computing read and write 1/Os
during merging, we expect that number of items written
when the layer is already half full should be decreased by the
expected number of duplicates removed among the two sets
of keys. Again, the resulting I/O savings will be stepwise in
pagesize. In particular, if the original size of the array would
have only been slightly into the final page, it will take very
few duplicates to reduce the I/O count by 1, whereas if all
pages would have been full, it will take a full page’s worth
of duplicate removals to improve I/Os. The same savings
will be experienced again when these items are read to be
merged into the lower layer.

The correct way to handle the duplicates requires some-
what more consideration, but the only statistics we are cur-
rently using The are the empirical number of update queries
and the empirical number of duplicates found and removed
on each layer over the window of interest.

4.5 Estimating Statistics with 0(1) Memory

Cache: to estimate the number of disk accesses we will
save by adding dM extra bits of memory to the cache, we let
consider dM as a number of extra entries in the cache. That
is, we calculate the savings from having dM/E extra cache
entries available. As mentioned above, the relevant statistic
here is the average cost of a read in the database. To cal-
culate this, we collect statistics on the total number of disk
accesses and total number of queries. The expected cost per
query is then the number of disk accesses over the window
divided by the total number of queries. To approximate the
probability of the item being in the cache times the number
of queries, we maintain a statistic for the number of times
the last cache slot was accessed during the window of in-
terest and make the assumption that the number of hits on
the next marginal slot(s) would be approximately the same.
Then we can calculate the final expected I/O savings as

dM/E x E[hits] x E[cost/query]

Bloom Filters: To estimate the number of disk accesses
we will save by adding dM extra bits of memory to the
bloom filters, we first decide how to allocate that Mj;,,,,, =
Mpioom + dM bits using Monkey or the baseline allocation,
giving us m; and m; bits per bloom filter on each layer. At
each layer i, for both m; and m}, we update rolling averages

of the theoretical false positive rate fpi =E [0.618575] and

’

fp; =E {0.6185"7;] every time the bloom filter is queried

(where n; is constantly changing based on insertions and
flushes of the filter). These statistics (individual floats) give
us an estimate of the aggregate false positive rate at m;
and m} robust to changing layer fullness. Finally, we keep a
counter 7; pbloom false Of the number of times requested items
are not in bloom filter ¢. This counter is incremented either
when the bloom filter returns false (which we know immedi-
ately) or returns a false positive (which we can record after
fruitlessly searching the layer). This counter allows us to
estimate disk accesses resulting from our current or altered
false positive rates. The final savings is therefore

~ 7 ~
Z(fpz - fpz) * Tj bloom false,

2

SaVingS(Méloom) =

and only requires keeping two floats and one integer. Note
that in our simulation, for flexibility, we keep a histogram
of n; values at each bloom filter request to avoid needing to
predetermine m}, but in a practical implementation this is
unnecessary.

Note that because we can obtain these estimates on a
layer-by-layer basis, we can investigate whether reallocat-
ing memory from one bloom filter to another, empirically,
should reduce I/Os. Validating the results of Monkey [3],
in Figure 4 we find that for the baseline allocation, moving
bits does improve performance, but for Monkey, it does not,
regardless of workload.

Buffer: To estimate the number of disk accesses we will
save in reads by adding dM extra bits of memory to the
buffer, we use statistics maintained on the total bloom filter
accesses per layer, bloom filter false positives per layer, and
hits per layer. We estimate the expected additional number
of hits on any given layer as the original hits times the new
theoretical size divided by the actual original size. That is,
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Figure 4: Estimated change in I/Os when moving
bits from one bloom filter to another (keeping total
bloom filter memory constant). Regardless of work-
load, changes in I/Os for Monkey are all less than
1, indicating its optimality.

the number of extra hits is equal to

size; +dM x T"

new_hits; = hits; * -
size;

For each expected hit, we have an I/O savings equal to the
false positive rate on the bloom filter of that layer, as de-
scribed in the previous section. To calculate this for a layer
i, We use

false_positives;

FE ] hit); =
[savmgs/ t ]I bloom_accesses;

Then the total number of I/Os saved should be

L
Z new_hits; * E[savings/hit];

=0

where for layer 0, the buffer, the E[savings/hit] = 1, as the
access cost at L1 is always exactly 1 and the access cost at
the buffer is always 0.

To estimate the number of disk accesses we will save in
writes/updates by adding dM extra bits of memory to the
buffer, we maintain statistics on total number of entries that
passed through any given layer, number of duplicates re-
moved at any given layer, and number of entries in any given
layer at the end of the period. For a workload without dupli-
cates, we can simply use these statistics to deterministically
calculate the final allocation and number of read and write
I/0s that would have occurred throughout the process for a
second tree with buffer size + dM, calculating every batch
of read and write merges and summing over the number of
pages that would have been involved. For the original tree
we can either use statistics on empirical I/Os during the
merging process or use the same deterministic formula to
calculate what they would have been. The expected saved
1/0Os then is simply

coStiree — COSttree+d1W

When we consider duplicates, the estimate becomes much
more noisy. To consider the effect of duplicates on reduc-
ing the total number of pages read and written during the
merging process, we reduce the number of entries that pass
through each layer of our theoretical larger tree by the per-
centage of duplicates removed at each layer, calculated as

duplicates_removed;

total_entries;

This then changes the final layer structure of the estimated
tree. We also consider that duplicates should reduce the
total number of entries written and then read after two seg-
ments are merged together. Then for those read and write
components that occur on an already half-filled layer, we
reduce the number of elements by multiplying by

duplicates_removed;

total_entries;

This will reduce the total I/Os by number of page reads it
makes unnecessary. With this adjusted cost for the larger
tree, we again calculate the expected saved I/Os as the esti-
mated I/Os of the hypothetical larger tree subtracted from
the empirical or theoretical 1/Os of the existing tree.

4.6 Testing Accuracy and Variance of Statis-
tics

To confirm that our estimates are reasonable, we ran 250
simulations for three separate workloads and compared our
estimates of each gradient to the actual savings for a sepa-
rate tree with 8 bytes of extra memory in the corresponding
LSM component (against which we ran the same workload).
Results can be seen in Figure 5.

There is a large amount of variance in the simulated re-
sults, both because of randomness in the separate instantia-
tions of the workload and randomness in the execution of its
queries, but for the most part, our estimates of the average
savings are both precise and accurate. There is a slight devi-
ation for the uniform memtable savings calculation, but the
variance is so high that it does not appear to be significant.

The fact that our estimates of the expected I/O savings
are so precise across workloads gives us confidence first that
our simulation and modeling are correct, and second that
they will generalize to more complex, real-world workloads
with more queries and keys.

S. DATABASE GRADIENT DESCENT

Now that we have validated the accuracy of our basic gra-
dient estimates, we evaluate all three of them at every grid
point along the simplex of simulated LSM trees with con-
stant total memory. We then overlay an arrow on top of the
disk access contour plot pointing from the lowest gradient
component to the highest gradient component (signifying
that our method suggests moving 8 bytes from one compo-
nent to the other). Finally, for each grid location, we follow
the arrows until we either reach the edge of the simplex or
a point we have already reached. We then plot an orange
dot. This process simulates what would occur in a discrete,
stochastic form of gradient descent. To evaluate how well
our adaptive optimization procedure would work, we can vi-
sually inspect the orange dots, the arrows, and the yellow
dot (signifying the experimental global minimum) and see
how well they agree.

Results for basic workloads can be seen in Figure 6.
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Figure 5: Light-footprint statistical estimations of the gradient vs. simulated results for cache, bloom filters,

and the buffer on three distinct workloads.
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configuration.



The results for Zipf workloads in Figure 7 look quite dif-
ferent, but we are also generally able to reach the global
minimum, at least in the Monkey case. As we increase the
skewness parameter s, we observe a qualitative change in
both our simulated results and estimated gradients. At low
s, the best configuration is a mixture of mostly Bloom filter
and cache memory with a relatively small buffer, while at
high s, Bloom filters are less useful and it is better to al-
locate more memory to the buffer. This effect may be due
to the fact for less skewed workloads, we are more likely
to request unpopular keys which may be buried deep in the
tree (for which we need Bloom filters), but for highly skewed
workloads, we obtain better write and read savings by using
the buffer as kind of an auxiliary cache.
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Figure 8: Discover-Decay simulation results overlaid
with gradient estimates for v ~ Beta(100,1) (lightly
skewed) and v ~ Beta(2,1) (highly skewed).

For Discover-Decay workloads (Figure 8), we observe a
similar transition (as with Zipfs) as we vary skewness, but
with a shifted balance between the cache and the buffer (be-
cause we have much more frequent inserts and updates).
Again, we reliably find a good local or global minimum fol-
lowing gradient estimates.

Finally, returning to the Periodic Decay workloads, we
find that gradients more or less capture the behavior we
noted near the beginning of the paper. For lower effective
numbers of popular keys (but high temporal locality), we
tend to end up allocating most of our memory to the buffer
and none to the bloom filters, but as our “working set” ex-
pands, we are pushed closer to the center of the graph. In
the bottom row, gradient descent is drawn into two distinct
modes based on the starting location, suggesting that our
gradient estimations are high-resolution enough to capture
the nonconvexity. In general (thanks to Niv Dayan for this
insight as well as many others in this paper), there are many
situations in which increasing either the buffer or the bloom
filter will reduce 1/Os, so we should expect multiple locally
optimal allocation strategies to exist.
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6. CONCLUSIONS AND FUTURE WORK

In this paper, we have used both simulation and modeling
to analyze how LSM trees perform under a variety of mem-
ory allocations and stochastic workloads. In particular, we
have shown that the optimal allocation of memory between
the LSM tree’s cache, buffer, and bloom filters strongly de-
pends on the workload, although we have independently ver-
ified the conclusions of Monkey [3] that given a total amount
of bloom filter memory, there is a unique optimal allocation
of it across the bloom filters.

Additionally, we derived formulas for the expected I/O
savings if we increase the memory in any component of the
LSM tree, along with methods of accurately estimating these
savings without using almost any additional memory. We
used these estimates to implement a discrete form of stochas-
tic gradient descent for database parameters, and showed
that although the optimization problem is sometimes non-
convex, we can usually reach a very good optimum.

As a first next step, we should verify these theoretical and
simulated results by testing against a real LSM tree imple-
mentation such as RocksDB or LevelDB. We should also see
if we can improve the precision of our gradient estimates by
storing additional statistics. For example, there are a num-
ber of cases where we take rolling averages, but could re-
place them with histograms instead (in particular, we found
it convenient to store a histogram of bloom filter lengths at
each access to allow us to calculate the average false positive
rate for any number of bits after the fact rather than rolling



averages of expected false positive rates for a few potential
memory allocations). Histograms are a much heavier statis-
tic than a simple number but provide a greater flexibility in
the reallocation stage. More work needs to be done to calcu-
late how much added benefit could be achieved in practice
from these costlier statistics and to find scenarios in which
they might be worthwhile.

Additionally, we have not developed a strategy for how
to best use our gradient estimates to adaptively change the
database in real time. For example, how many queries do
we need to see before our gradient estimates become accu-
rate, and what is the optimal time/threshold for reallocating
memory? In an environment where we assume full flushing
of a given layer and the recomputation of all bloom filters for
the layers involved in the flush, it seems like this would be an
optimal point to reallocate memory locally among the data
structures that are being rewritten anyway. However, this
leads to only rare opportunities to recompute deeper layers
of the LSM tree, and in practice LSM tree layers are not ac-
tually flushed in this ‘all-at-once’ fashion. A fully fleshed-out
policy would need to model the cost of reallocating memory
and restructuring the tree alongside our noisy estimates of
the gain, ideally using decision-theoretic metrics, to evaluate
exactly when and what we should change.

Additionally, just as with gradient descent on continuous
loss functions, we need to choose a learning rate, which in
this case corresponds to how much memory we should re-
allocate between components. In this paper, we only con-
sidered reallocating the smallest available piece of memory.
However, in situations where we have a large amount of
conviction in the predictions and they show large potential
gains, it might make more sense to reallocate a large block
of memory at once, which would help us reach the optimal
configuration faster and with fewer restructuring overheads.
However, too large a step size might make the optimization
procedure less stable and even result in worse performance,
at least transiently. More work in modeling, simulation, and
experiment is needed to determine a fast but safe descent
schedule.

A slightly more far-fetched idea would be to move away
from local optimization altogether by determining richer ways
of statistically characterizing workloads. For example, we in-
terpreted many of our results, anecdotally, by describing the
“temporality” of a workload or the size of its “working set” of
keys accessed at any given time. It may be possible that the
optimal memory allocation of an LSM tree is a simple, de-
terministic function of statistically estimable quantities that
correspond to these ad-hoc characterizations. If that is the
case, then we could do an online analysis of the workload
once then jump directly to the optimal configuration.

Finally, we saw in our buffer savings calculation that rel-
ative sizes of memory access (i.e. pages) can affect the total
1/0 savings. In the end, it would be important to consider
how the difference in sizes between cache lines, pages on
disk, and possibly read chunk sizes from flash would affect
our estimates and the optimal allocations. We should also
consider fence pointers.
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