
Visual tools for debugging data structure
performance

Coordinator​: Kostas Zoumpatianos
Advisor​: Stratos Idreos

Background and Motivation

While processing power of household CPUs has increased extremely rapidly in recent years,
the speed of access to storage hasn't increased at the same rate. As a result of this, data
movement is often the major bottleneck In the world of databases and data intensive systems.
Consequently, designing appropriate data structures that minimize data accesses is one of the
key concerns of the field.

Validating a new design is relatively straightforward: a well designed benchmark will quickly
point to a speed / throughput improvement or lack thereof. On the other hand, it is rather more
difficult to determine the reasons behind ​why​ a certain data structure implementation performs
the way it does. An oft-encountered problem is that a design would perform well theoretically,
but the real world implementation doesn't live up to that standard. Given the highly complex
interactions of the different components of a modern computer architecture e.g. different data
and instruction caches and fallback rules between those, prefetching, pipelining, TLB, SIMD or
regular parallelism, it can be difficult to guess where exactly the problem is. The inspiration for
this project came from a situation where the author was trying to debug why a trie
implementation was slow.

Goals

Existing tools provide incidental and non-detailed metrics e.g. from the point of view of the
hardware (L1 / L2 / LL cache hit ratios) or the operating system (CPU usage, load averages,
thread usage) or the larger system in which the data structure operates (number of operations
per second). None of these directly address our core concern: memory accesses to the data
structure itself. I would like a mechanism that understands our data structure and provides
metrics from the data structure's point of view.

Moreover, I would like a tool that works with real, existing data structure implementations, with
minimal modification. Finally, I want a tool that avoids interfering with the performance
characteristics of the software being measured.

Related Work

First and foremost, without an implementation, analytical models are great tool to reason about
the expected properties of a hypothetical data structure. However, the work of modelling is
difficult and thought-intensive. Careful decisions need to be done around which details are
modelled and which are to be abstracted over. It is easy to make false assumptions. Also, as
the conditions and scenarios become more complex (e.g. taking into account complex query
and data distributions), so do the models, to the point where a prototype implementation might
be simpler to create.

Given an implementation, there are empirical tools that are often brought up: for example,
tracing mechanisms that use hardware performance counters like ​perf​ and ​dtrace​, but the
metrics aren't very detailed (e.g. number of L1 cache hits/misses). This gives a general idea of
what might be happening. Memory / heap profilers like valgrind are generally geared towards
monitoring allocation sites, number of allocations, overall memory consumption, and the
detection of memory leaks. None of these tools get to the heart of the matter, which is getting
detailed records of memory accesses.

For memory accesses specifically, ​lMem/memTrace​ is a very interesting prototype tool
specifically tailored to trace memory accesses with minimal overhead. This could potentially
serve as the tracing component of the debugger, but has not been maintained since. ​MemDB​ is
a more comprehensive tool with the closest overall goals to our project, but focusing more on
profiling memory sharing in multithreaded applications. It is also similarly unmaintained. Both of
these tools depend on an old versions of libraries which depend on an old versions of GCC,
which makes it a frustrating experience to deal with.

These tools, however, provided the inspiration for using Dynamic Binary Instrumentation
frameworks for doing memory access tracing. Dynamic Binary Instrumentation involves
analyzing the behavior of a running program by injecting instrumentation code alongside the
regular program code. The injected code can be thought of as an event handler that performs
whatever action is necessary to gather whatever metric is necessary. However, since this
happens at the machine code level, DBI tools are agnostic to the underlying language and
frameworks of the code. DBI tools are used in the security industry for analyzing malware.
Another example is Valgrind, which is usually thought of as a profiler, but underlying it is a
dynamic binary analysis framework, albeit a heavyweight one that comes with a dramatic
performance hit. Newer tools focus on reducing the performance overhead and the side-effects
of instrumentation. There are two main open-source lightweight DBI frameworks: ​Intel PIN tools
and ​DynamoRIO​ which provide similar features. I chose the latter because it was well
documented, simple to build across a variety of platforms, and openly and actively developed.

https://perf.wiki.kernel.org/index.php/Main_Page
http://dtrace.org/blogs/about/
https://github.com/HexHive/memTrace
https://github.com/DataChi/memdb
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://dynamorio.org/

Results
I have built a prototype to test the viability of this idea.

First, the memory trace of a running executable is dumped with DynamoRIO's
memtrace_x86_binary instrument. This trace can be thought of as a log of all memory accesses.
Each entry contains information on the type of access (read/write), virtual memory address, the
size of the access, and other more tangential information. This file can currently reach several
gigabytes and hundreds of millions of entries for a program that runs a little over a second.

This file is then processed using a python script, parsing the binary format and dropping records
from the trace that aren't relevant. This then allows us to create visualizations of our memory
space.

One such visualization is a heatmap: ignoring temporal data, I focused on the memory region
that contains the data structure, to notice specific access patterns. Here is a heatmap that
shows memory accesses in two different data structures:

These heatmaps compare two very common methods in databases to search for values: scans
and binary searches. The graph on the left shows a series of scans through an unsorted array.
The gradient-like nature of the reflects the fact that every search starts scanning at the
beginning of the array, but then some searches stop early when they find their result. The graph
on the right shows a series of binary searches over a sorted array of the same values: the

accesses appear to be concentrated in a small number of evenly distributed points (the
midpoints that the binary search uses), but also there are a lot less accesses overall, which are
fundamental benefits of a binary search. As one can see, even this simple graph provides
important information about the behavior of the data structures without any information a priori.
Below is another similar heatmap for a B-tree where one can see the different nodes and the
sequential scans within the nodes:

Another option for visualization that we experimented with includes the temporal aspect of the
data: we can "play back" the access log, plotting it in regular intervals and changing the color
scale as we go:

● Scan animation:
https://drive.google.com/open?id=1P3vfutDH8av0ApdjDoanByMnP_nKL7lY

● Binary search animation:
https://drive.google.com/file/d/19rbx4eSLfHPfbVPA6YlNER2kqpK3dpEJ/view?usp=shari
ng​ (You always see the midpoints as highest, and since the accesses are uniformly
distributed, as more results land on all the regions of the array the "background" starts to
increase all together)

https://drive.google.com/open?id=1P3vfutDH8av0ApdjDoanByMnP_nKL7lY
https://drive.google.com/file/d/19rbx4eSLfHPfbVPA6YlNER2kqpK3dpEJ/view?usp=sharing
https://drive.google.com/file/d/19rbx4eSLfHPfbVPA6YlNER2kqpK3dpEJ/view?usp=sharing

Vision and Future Work
I envision a final tool to be split into three main parts: the tracer, the preprocessor and the
visualizer. The tracer is a very lightweight DynamoRIO instrument that dumps relevant memory
traces from an executable with as little performance overhead and configuration as possible.
The preprocessor is a tool to take the binary trace dumps, cleans them up and converts them
into a more easily processable format that's ready to analyze. The visualizer then takes a clean
trace and visualizes it in a multitude of informative ways. This can be implemented as a
command line tool but also as a library so that it can be used alongside more complex
exploratory data analysis tools, e.g. inside a Jupyter notebook.

For the tracer:

● The current tracer worked well but the size of the trace dumps pose a problem - it makes
the analysis cumbersome:

○ A sampling approach might work well, however this might interfere with some of
the more granular analysis

○ Starting and stopping the trace to only record relevant parts of the program can
be implemented through DynamoRIO's ​annotation framework

○ A compressed tracing format might be helpful - e.g. long sequential writes can be
recorded as a single range record instead of thousands of records. We might
also simply record offsets rather than full addresses.

● Alternatively, we might be able to reuse the dump format from DynamoRIO's cache
simulation framework, which wouldn't cut down on size but would allow the trace to also
be run through their cache simulation tool.

The preprocessor:

● Allow filtering the trace down and tagging the trace's relevant regions by a pre-specified
set of address ranges, which can be dumped during program execution.

● Improve data structure detection: currently we use a very simple clustering method that
looks at minimum distances between accesses to detect relevant-looking address
ranges if none are given. We can probably use some better algorithms for this.

For the visualizer:

● Provide more over-time animations
● Allow for visualizing multiple memory regions at the same time

○ For memory regions that have multiple connected regions (e.g. BTrees), allow
the user to input a list of connections, so we can draw them like the data
structure itself.

● Experiment with the temporal aspect of data accesses:
○ We could generate an access sequence network, which would show how often

which region gets accessed after every other region, which might help tease out

https://github.com/DynamoRIO/dynamorio/wiki/Annotations

dependencies between memory regions and point to items that should be placed
closer together in memory.

● A big open question is how we should handle changing data structure shapes over time -
is there a possibility to track this? In a large memory space it's rare that new allocations
happen in the same virtual memory address as the old one, so perhaps it's only a matter
of marking "removed" regions appropriately. The annotation framework could be helpful
in this, or alternately we could track de-allocations with DynamoRIO.

