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Abstract

The objective of this project is to design and implement performance improvements for WPI’s intelligent
ground vehicle, Prometheus, leading to a more competitive entry at the Intelligent Ground Vehicle Competi-
tion. Performance enhancements implemented by the project team includes a new upper chassis design with
a modular payload area, a reconfigurable camera mount, extended Kalman filter-based localization with a
GPS receiver and a compass module, a lane detection algorithm, and a modular software framework. As a

result, Prometheus has improved autonomy, accessibility, robustness, reliability, and usability.
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Chapter 1

Introduction

1.1 Motivation

The Major Qualifying Project (MQP) acts as the capstone or culmination of studies to a Worcester
Polytechnic Institute (WPI) undergraduate student’s education at the university. This project is directly
related to the “major field of study and should demonstrate application of the skills, methods, and knowledge
of the discipline to the solution of a problem that would be representative of the type to be encountered in
one’s career” (WPI, 2010). The major fields of study of the students completing this project are computer

science, electrical and computer engineering, mechanical engineering, and robotics engineering.

This MQP involves the study of autonomous robotic ground vehicles. There has been a need for intelligent
ground vehicles over the past two decades. In 1990, the Department of Defense (DoD) consolidated several
ground vehicle development projects under the Joint Robotics Program (JRP), which is directed by the
Office of the Secretary of Defense (OSD) (Pike, 2011). The Defense Advanced Research Projects Agency
(DARPA), which is commissions advanced research for the DoD, sponsors the DARPA Grand Challenge,
in which teams enter intelligent ground vehicles. The vehicles that are typically seen in this challenge are

automobiles, which have been transformed to operate autonomously (DARPA, 2011).

The VisLab Intercontinental Autonomous Challenge involved two unmanned vans that were tasked with
traveling about 8,000 miles from Milan, Italy to Shanghai, China. The unmanned vehicles follow two driven
vans, from which the unmanned vehicles take visual cues. The unmanned vehicles are responsible for avoiding
obstacles on their own (Vislab, 2010).

This MQP is based on the autonomous robotic ground vehicle named Prometheus. Prometheus, shown
in Figure 1.1, is the creation of a 2010 WPI MQP group which built it from the ground up. Prometheus had
a custom-welded frame, two driven wheels in back, and one steered wheel in the front. The vehicle used an
array of sensors which included a differential GPS receiver, a digital compass, cameras, and a light detection
and range (LIDAR) device (LIDAR). These sensors constantly collect and process information about the
robot’s environment. The robot was designed with specifications, outlined below, that would allow it to
compete in the 2010 Intelligent Ground Vehicle Competition (IGVC). Next, an overview of the IGVC is
provided.
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Figure 1.1: Prometheus 2010 and components

1.2 Intelligent Ground Vehicle Competition (IGVC)

The IGVC requires teams of undergraduate and graduate students to design and build an autonomous

ground vehicle. There are several requirements of the vehicle which must be considered during the design

phase. These requirements include minimum and maximum speed limits, size specifications, emergency shut

offs, etc. The goal of the ground vehicle is to compete in a variety of challenges that change from year to year.

The 2011 competition will include autonomous, design, navigation, and Joint Architecture for Unmanned
Systems (JAUS) challenges. The IGVC rules can be found on page 114 at the end of the report.

The autonomous challenge requires the ground vehicle to navigate through an obstacle course. The robot

must avoid the randomly placed obstacles while at the same time staying within the lane designated by spray

painted lines. An example of an IGVC obstacle course is shown in Figure 1.2. The amount of the obstacle

course that was completed, as well as time it took to do so are factors that affect scoring.

Figure 1.2: Example of an obstacle course at the IGVC with Prometheus 2010 in the foreground.

The design challenge requires each team to document and present the design strategy and process used to

develop their intelligent ground vehicle. Documentation is in the form of a fifteen page or less report which

includes specifications, innovation, the systems used, and the organization of the team. The presentation



is given to a panel of judges and allows the teams to make use of graphical aids to expand upon what
they discussed in their paper. The judges then do an examination of the vehicle and score it based on the

categories specified in the IGVC rules.

The navigation challenge requires the ground vehicle to travel from its starting point to an array of
waypoints. These waypoints are provided to the teams in the form of latitude and longitude and may have
obstacles in between them. The robot must go to these waypoints in any order it decides and then return
to its starting point. Number of waypoints travelled to, as well as time it took to do so, are the factors that

affect scoring.

The JAUS Challenge requires each team to interface with a judge’s Common Operating Picture (COP)
to communicate and provide information using the JAUS protocol as requested by the judges. This basically

entails connecting to an external wireless router and relaying information to the judge’s computer.

There are several benefits of competing in the Intelligent Ground Vehicle Competition. Participants are
working with new technology and applying it to the design and creation of their vehicles. There is a wide
range of student specialties that can be applied to the project tasks, which allow for hands-on education and
experience. This not only improves the student’s particular skills, but also provides the opportunity to work

on a multidisciplinary team and contribute to the ideas of the group (IGVC, 2011).

1.3 Starting Condition of Prometheus

The 2010 MQP team returned from the IGVC with the Rookie of the Year Award. Being honored as
the best first year team was a huge accomplishment and provided a solid foundation for future teams to
build upon. Prometheus did well in the JAUS competition, had obstacle avoidance capabilities, and was
innovative enough to impress the judges during the design competition. However, despite being able to
avoid obstacles, Prometheus was not competitive in the autonomous challenge due to its lack of ability to
detect lines effectively. Prometheus also could not compete in the navigation challenge. The navigation
challenge relies heavily on the use of an accurate Global Positioning System (GPS). Although Prometheus
was equipped with a differential GPS that had been tested and implemented in the past, it experienced
accuracy problems at the competition, which rendered it useless for the challenge. The lack of a GPS in

addition to non-functioning sensor error reduction made localization inaccurate as well.

1.3.1 Sensors

Each sensor was connected to either the NI ¢cRIO or the On-Board Computer. All sensors except for the

cameras were attached to the cRIO. An overview of this topology can be seen in Figure 1.3.

To input image data, a pair of Point Grey FL2C-08S2C cameras with CCD sensors were utilized, which
are capable of streaming color images with a resolution of 1024x768 at 30 fps. The cameras were placed on
top of the robot, both facing the forward direction, and separated by approximately 20 cm. An IEEE 1394b
connection between the computer and each camera supplied data transfer capabilities as well as power.

Prometheus 2010 gathered a range of odometry data. Heading data was collected with a PNI Compass-

Point V2Xe 2-axis digital compass. This provided Prometheus with its heading in degrees. Prometheus
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Figure 1.3: The major sensors and computing devices of Prometheus 2010. In this design, the cRIO plays
an essential role in parsing data from the sensors.

2010 also gathered odometry data using quadrature encoders on both of the back, driven wheels. To aid
in localization, the team used a Sokkia Axis 3 differential GPS receiver, which delivered promising results
throughout the year. A SICK LMS291-S05 light detection and ranging (LIDAR) sensor was used for obstacle

detection.

1.3.2 Software Architecture

The intelligence for Prometheus 2010 ran in a single process on the On-Board Computer. The process was
responsible for performing localization, storing the world map, performing path-planning, communicating
with the cRIO and Command Center Computer with the 2010 Prometheus Protocol, and competing in the
IGVC JAUS challenge.

In an effort to make the code for the On-Board Computer more understandable, the 2010 MQP Team
divided it into several libraries. Unfortunately, each library remained highly coupled with the other libraries,
and the team’s goal was not achieved. Regardless, they continued to use this model to compile their code,

and they planned to refactor the source code at a later date.

The 2010 MQP Team also made some use of the OpenJAUS 3.3 framework to structure their code.
In theory, this would have allowed their code to be more modular and extensible.Unfortunately, the team
did not use the full potential of OpenJAUS, and merely used it for the main entry point of the On-Board
Computer software. The team also defeated the purpose of using JAUS by defining their own messaging

protocol and running everything in a single process.

The messaging protocol that the 2010 MQP Team designed and implemented was very simple. The
protocol made use of UDP datagrams up to 4000 bytes in length that each used 9 bytes for header information

and 3991 bytes for data. Messages were used to communicate between the cRIO, On-Board Computer, and



Command Center Computer.

Because of its simplicity, the protocol was easy to implement in a variety of environments. The 2010 MQP
Team implemented programs in C++, Java, and LabVIEW that all communicated using this protocol (Wang
et al., 2010). Unfortunately, this protocol has poor extensibility. While the protocol supports packages up
to 4000 bytes in length, the format in which data is sent is very limited because there is no control over how
this data is interpreted. Programs need to be hard-coded to interpret the package data a certain way (Wang
et al., 2010). It would be difficult to change the format of the data for a certain message. For example,
changing the number of bytes used to store a value could prove to be cumbersome as the programmer will
need to change the length of the value in other areas of the code as well. Fortunately, frameworks like JAUS
and Robot Operating System (ROS) make it easy to define new messages so that the format of a message

only needs to be changed in one place.
The 2010 MQP Team ran into several problems with the software.

e Difficult compilation errors
e Unintuitive program flow

e Lack of testing

1.3.3 Intelligence

The 2010 MQP Team used a finite Cartesian map to store the state of the environment. The map was
split into squares of size 10 cm by 10 cm, and the robot was always positioned in the center of the map, while
other objects were positioned relative to the robot. The probability of an object occupying a grid space would
decrease over time or disappear altogether when the robot moved out of range. The mapping collected data

from the LIDAR to calculate the probability of an object occupying any of the nearby locations.

The image data from the two cameras was processed on an NVIDIA Tesla C1060 General Purpose GPU.
The data was interpreted stereoscopically to enable the gathering of information regarding the distance of
objects from the robot. To achieve this, the data went through two distinct processes: rectification and pixel
matching. The rectification step takes the two images from the two cameras and transforms them onto a
single plane. The pixel matching step takes the two transformed images and matches up pixels between the
images that represent the same point in space. These two steps combined took around 53 ms of time. In
addition to these two processes, an additional empirical process of camera calibration was used to obtain
calibration matrices that describe the true parameters of the setup, such as the focal lengths of the cameras,
the skew coefficient between the cameras and the radial and tangential distortions of each camera. These
matrices are used to correct the depth data when calculating the 3D location of a pixel in the image. The
calibration step is done manually, by displaying a known structure to the camera multiple times from different
viewpoints. It must be repeated every time the orientation of the cameras is changed. Finally, using this
information, the image was segmented using the self-organizing map and simulated annealing (SOM-SA)
algorithm as described in (Dong & Xie, 2005), to be used in object detection and line detection (Wang et al.,
2010).

The 2010 MQP team also performed navigation by creating a set of arced paths as described in von
Hundelshausen et al. (2008). Each arced path orignated from the robot’s turning center and could be

summarized by two motor commands, one for each the left and right wheels. During the navigation challenge,



the robot used a heuristic that took into account the drivable length of each arced path as well as the robot’s
distance to the goal after following the path to decide which path to drive on. A description of the choosen
path was sent to the cRIO where it was converted to motor commands.

1.4 Other Competitive and Innovative IGVC Entries

The IGVC gathers over fifty teams from across the nation for a multi-day contest. The competition
itself can be broken down into specific task requirements, including line detection, obstacle avoidance, sensor
fusion and path planning. The teams aim to most effectively accomplish these tasks, ultimately cultivating a
huge variety of hardware/software approaches and implementations. Listed here are some of the noteworthy
approaches researched. They were chosen based upon effectiveness and innovation, both characteristics
valued by the IGVC.

Path planning, in particular, consists of the problem of generating a drivable path between two points
in a local map. Some path planning algorithms previously implemented in award winning IGVC robots
include Anytime Dynamic A* algorithm (Newman et al., 2011), and a combination of D* Lite and Field D*
algorithms (Abiola et al., 2010) by Princeton University, a Dynamic Delaunay Triangulation-based planning
approach (Chen et al., 2010) by the University of Detroit Mercy, and a modified Vector Field Histogram
(VFH) algorithm (Nepal et al., 2009) by Trinity College.

Outdoor line detection can be by itself a very challenging problem due to the dynamic light conditions, and
varying glare sources. Line detection implementation approaches vary widely throughout IGVC teams. Some
of the prominent approaches include a RANdom SAmple Consensus(RANSAC)-based algorithm (Newman
et al., 2011) by Princeton University, which is a multi-step process consisting of plane extraction, morpho-
logical analysis, edge extraction and interpolation (Nepal et al., 2009) by Trinity College, and a row-adaptive
statistical filter followed by a global threshold comparison (Chen et al., 2010) by Detroit Mercy.

Figure 1.4: City Alien, City University of New York’s entry for the 2010 IGVC



For obstacle detection most teams rely on a LIDAR sensor due to its reliability. Nonetheless, teams have
experimented with different approaches. Stereo vision, as implemented by Princeton University (Newman
et al., 2011), is a financially cheaper solution, but it is also a more computationally challenging approach
to the problem. Moreover, hybrid approaches that use both computer vision and LIDAR input, such as
(McKeon et al., 2006) can improve the map generation. Noteworthy to this category is the City University
of New York single camera 360 degree 3-D obstacle and line detection system (cit, 2010).

1.5 Goals and Requirements

The goal of this MQP is to expand upon Prometheus’ capabilities, bring it to a more competitive state,
and create a more efficient and robust chassis. Competitive state means that the robot will qualify to
compete in all IGVC challenges (example shown in Figure 1.5) and be a contender to place in all of them.
An efficient and robust chassis means inner components of the robot are easily accessible, the chassis can be
expanded upon during future research projects, and the robot is durable in an outdoor environment. The

following are our project requirements:

e Develop a competitive entry for the Intelligent Ground Vehicle Competition

e Autonomously navigate through a flat, outdoor, static environment given no prior state information

e Autonomously follow and stay within a path marked by two lines on a grassy field

e Plan a path and autonomously navigate to several GPS coordinates that are given as input while
avoiding obstacles

e Create a rugged robot that can function in a variety of weather conditions

e Develop a manual control system that is intuitive and easy to use

1.6 Specifications
Based on these requirements, we have developed a set of design specifications:

Mechanical

e Autonomously navigate between 1 and 5 MPH

e Operate under sunny and rainy conditions

e Improve usability by simplifying peripheral connections

e Allow for direct interaction with the robot (no laptop)

e Make start-up manual mode take less than 30 seconds

e Have reliable wireless e-stop command from at least 50 feet away

e Create a safety light / visual cue relating state of the platform at 50 feet away
e Have a turning radius less than 5 feet at 1 MPH

e Ability to quickly load and carry a 18in.x8in.x8in. 20lbs payload

e Improve chassis to allow for future research possibilities (eg. Robotic arm and helipad)

Sensing

o GPS localization under 0.5m



e Detect 3-inch white lines on grass, outdoors, on a sunny or cloudy day

e Filter odometry sensor error to be lower than unfiltered error

Intelligence

e Maneuver through obstacles that are a minimum of 6 feet apart

e Generate the shortest path between several waypoints, and drive through them while avoiding
obstacles

e Communicate with the judges’ common operating picture using JAUS

e Account for up to 15% incline deviations on the field while driving autonomously

Figure 1.5: Prometheus 2010 at IGVC with a typical obstacle course in the background

1.7 Paper Overview

Prometheus has several different subsystems and each of these subsystems was analyzed and produced
results. Because of this, the paper is broken down in a manner that addresses each subsystem individually.
The four subsystems focused on, chosen at the highest possible level, are Robot Structure Design, Sensors,
Software Architecture, and Intelligence. The smaller subsystems that fall under each of these chapters are
addressed as well. Each chapter is broken down into sections, with a general introduction, background,

methodology, results and analysis, and a conclusion.



Chapter 2

Robot Structure

Prometheus’ main purpose is to be a functional autonomous ground vehicle. However, for the vast
majority of time it operates under testing conditions. Most of the research and prototyping on Prometheus
is done on one specific subsystems at a time, such as vision detection, mapping, or sensor fusion. Our team
believes having an emphasis on the human-robot interaction portion of Prometheus can ultimately make the
developing, debugging and testing phases happen significantly faster and smoother. In order to accommodate
such a requirement we came up with a multifaceted solution. Prometheus’ chassis is undergoing an update

that will include, but is not limited to:

e Creation of a robot external interface panel.

e Top cover redesign for environment isolation and sensor reposition.

e Addition of a touch screen monitor to the chassis for information transmission and control.
e Addition of a visual cue informing the current status of the robot.

e Smoother control under manual mode.

2.1 Background

This section summarizes the analysis that was used to determine areas of improvement on the 2010
Prometheus design with regards to the physical structure of the robot. This is broken down into two main

categories - the chassis mechanics and the user interface.

2.1.1 Chassis Mechanics

The 2010 Prometheus cover met the previous year’s design specifications. The cover included mounting
areas for cameras, GPS receiver, wireless e-stop receiver and compass. Also, the cover was fully weather
proof. Meeting these design specifications worked well for this version of Prometheus, but there were a
number of shortcomings that needed to be addressed. Some of the errors with the camera functionality were
determined to be caused by the camera position. For example, the glare of low level light during sunrise
and sunset made it very difficult to detect white lines on grass. Also, the minimum distance visible in front

of the robot was more than two feet in front of the robot. This caused problems with line detection when



the robot made sharp turns near lines. Another problem with the 2010 design is that the entire cover must
be opened to change the batteries. While the cover protects the electronic components from the elements

during operation, all these components are exposed when the batteries must be exchanged.

The 2010 cover design was built with the intention of keeping all the sensors attached to specific locations
on the cover. Making changes to the location of sensors is difficult and would require the restructuring of
the cover. This type of single purpose design does not make additions or modifications to the robot very
easy. As Prometheus transitions toward use as a research platform, it is important to be able to add other

devices and sensors to the robot with minimal changes.

One of the problems with the current design is that the driven pulley is attached to the wheel yoke by
two set screws on portions of the steering shaft. This has created two problems. One is that when forces
are applied to the wheel when turning, the shaft had been worn down allowing the set screws to consistently
loosen. This leaves play in the steering mechanism which means that the front wheel does not immediately

react to the driving motor.

Another issue with the current system is that the motor is used to hold the wheel in a stationary
position. This was a problem with previous driving motors. The motors were intended to be self-cooling
when spinning. However, being stationary prevented them from cooling down and led to two motors burning
out. The previous team replaced the smaller motor with a much larger motor that used much less of its
capacity to hold the wheel in place and could more easily dissipate the heat. This solution has not shown
any problems and therefore investigations of the improvements to the steering system have been focused on

the shaft connection to the pulley rather than the drive system.

On further analysis of the front wheel steering mechanism, it was observed that the only thrust bearing
on the assembly was the turntable bearing made with 0.029 inch galvanized steel. This particular bearing
is rated for a load capacity of 500 1b. While the weight from the robot on the front wheel is much less than
this, the forces are very dynamic. Rough terrain can cause large accelerations and jerks on the turntable.
Excessive stress placed on the pieces of the turntable can be alleviated with a more effective use of a more

robust thrust bearing.

2.1.2 Usability Improvements
External Interface

The need for an external interface occurs from the recurring interaction with the many different hardware
components susceptible to weather damage. During debugging there is a need to directly interact with
Prometheus’ on-board computer, cRIO and power systems, but without an external interface the cover has
to be open to reach the many different I/Os, gratuitously exposing the many electronic components to a

non-friendly environment.

Our solution was to implement a central external interface. This panel will have a wide range of I/O
interfaces, such as the on-board computer power button, the cRIO reset button, LED status, as well as USB
and VGA inputs. This elegant approach will virtually eliminate the robot exposure because of communication
interfacing. Furthermore, this improvement virtually stops the need to move and connect wires within the

robot. This is beneficial because loose wires tend to disconnect while Prometheus is operating, causing a
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wide range of unwanted behaviors.

Monitor

Our team believes that the addition of a monitor to Prometheus’ chassis greatly improves usability. A

monitor allows real-time feedback of the many systems of the robot in a concise and informative way.

Due to the outdoor nature of the competition, the monitor set up has to be visible in direct sunlight,
weatherproof to match Prometheus’ current capabilities, DC powered (preferably 24V), relatively small (10
-15 inch), and have a simple input interface. A touchscreen in particular would be perfect to meet this final

requirement.

The touchscreen allows for the implementation of a Graphical User Interface(GUI) that can quickly relate
information from the many different systems of the vehicle. When the GUI is fully implemented a given
user can select between multiple tabs, each corresponding to a different system of the robot. For example,
the “position” tab can display the current input from the GPS signal, as well as IMU information, while the
“vision” tab can display live video stream from the on-board cameras, or the Hough transform results if we

are dealing with line detection.

The variety of scenarios this tool can be applied to is almost endless. A touchscreen monitor located

directly on the chassis is a step towards a robust robotics platform.

Remote Control and Wireless Emergency Stop

Prometheus is made to drive autonomously, but having a manual remote control is essential during
transportation, debugging, and developing phases. In order to implement a manual control our team had
two options. The first solution would be connecting a laptop to Prometheus’ existing Wi-Fi network, and

using a joystick to send commands to drive the robot around.

The second option involved using an existing hobby-grade Radio Controller, which was originally intended
for RC hobby cars, helicopters, and airplanes. More specifically we are researching one of the major brands
in the market, Futaba, and their FASST line of products. The following table gives a succinct comparison

between the two different approaches.

Having a portable system, effortless start-up, and prompt reconnectivity were the three major components
that drove our decision. Because Prometheus is a research platform, having an intuitive and effortless start-up

system is necessary. Beyond that, the reconnecting time is critical when viewed through a safety perspective.

Based on this comparison we felt opting for the Radio Controller was the correct choice for our application.
Driving Prometheus only requires a controller with 2 channels (for direction and thrust), but our team is

looking into a system with three or more channels in order to keep it expandable for future research projects.

The IGVC competition, as well as our own specifications, requires us to have a wireless emergency stop
that can function 50 feet away from the robot. The 2010 set up used a wireless car key alarm system with a
range greater than 100 feet, but because of radio interference caused by the many other components on the
robot, the system is not reliable at distances greater than 30 feet. For a detailed radio interference study of

Prometheus systems refer to Appendix B.
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Feature

Joystick(Laptop)

Radio Controller

Wireless Frequency:

2.4GHz Orthogonal Frequency-
division Multiplexing (802.11n)

2.4GHZ  Frequency
Spread Spectrum

Hopping

Start-up sequence:

1. Start-up laptop
2. Connected to network

3. Run specific software

1. Turn on

Portability: Laptop and joytisck and wire Convenient remote control

Fine trimming: No Yes

Reconnection (after sig- | > 5 seconds after manual start- | < 1 second

nal is lost): up

Interface: Wi-Fi Receiver transmit servo com-

mands to cRIO

Range (tested on an open
field):

Approximately 100ft

Not measured

Future expandability

Yes

Yes

Table 2.1: Comparison of the different options for using a manual controller with Prometheus

The extra communication channels on the remote control allow us to bind a switch to the wireless
emergency stop. This solution brings the emergency stop away from the interference frequencies, increasing

range and reliability while keeping it portable.

Visual Cue

After extended hours working with Prometheus, it became apparent that there is not a simple way of
detecting the robot’s state, which causes several issues and ultimately slows down the development process.
For example, low battery levels cause some Prometheus systems to only partially work, but because there is
not an easy display of such information the programmer believes it is his changes that are causing the faulty
response, so he proceeds to spend a significant amount of time trying to fix the code before he realizes that

it is not the main problem.

Our solution to this problem is to use a multi-color controllable source of light to display the robot’s
status. The 2011 IGVC rules include a new regulation that demands every competitor have a safety light,

which only reinforces our decision.

Background research led us to several off the shelf solutions, but instead we decided to use 12V weather-
proof Red Green Blue (RGB) Light Emitting Diode (LED) strip. This system will be controlled by a circuit

designed and built in house.

2.2 Methodology

A new cover was designed to meet the requirements as specified earlier. This was done to improve the
position of sensors, improve the structure of the robot and improve the usability of the robot. Specific

parts of the overall design were made to address each of these issues. The combination of each of these
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Figure 2.1: Commercial weatherproof RGB LED strip

improvements was checked for compatibility. After determining the best overall design, a new cover was

built including all the new improvements.

2.2.1 Chassis Mechanics

Improvements were made to the chassis of the robot to address a couple major difficulties. To begin with,
the cover was redesigned to improve sensor functionality and expansion capacity as well as providing the
foundation for improved user interface. Also, portions of the chassis with questionable mechanical integrity

were replaced such as the connection of the steered front wheel.

Design of Cover

The goal of redesigning the cover of Prometheus is to improve the functionality of the cameras, provide
space for improved user interface and provide a better platform for future robotics research while protecting

the internal electronics from the elements.

The cover needs to meet the following performance specifications. These specifications are based on what

the cover needs to accomplish and some of the constraints of the system.

e Cameras must be able to see within at least one foot of the front of the vehicle.

e Modular devices such as robotic arms and rotor craft landing platforms must be attachable and inter-
changeable.

e Electronic components must be weatherproof from a reasonable amount of precipitation.

e Electronic components must be easily accessible by a user without turning off the robot and while a
modular device is attached.

e Buttons, switches and connections for the user interface must be accessible while the robot is running.

e The center of gravity should not be any higher or significantly further from the center of the polygon
of contact than in the current design in any configuration.

e Maintain an aesthetic shape.

If the cameras on Prometheus cannot see very close to the chassis, the ability for the robot to follow lines

close to the chassis is limited. This also limits distance at which the cameras would be able to see both the
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lines on either side of the lane spaced approximately ten feet apart. Decreasing the nearest visible distance

will improve the line following functionality.

The angle of the cameras relative to the light source can also be a problem such as in the morning and
evening. By improving the limit of the field of vision in front of the robot, the cameras will also be looking

down on the ground at an angle closer to the preferred normal to the ground.

One of the objectives of Prometheus is to be able to use the robot as a research platform in the future.
Having specific locations on the chassis that can accommodate a wide variety of sensors and devices will

decrease the setup time for research experiments.

It is important that Prometheus is able to perform in a wide variety of weather conditions. To begin
with, the IGVC continues regardless of rain. In order to be competitive, it is necessary to be able to run
the robot in rainy conditions. Also, by having a weather proof cover, Prometheus can have an extended
testing period. Ordinarily, outdoor testing and research might be limited to days with nice weather, but if

the electronics are sufficiently protected, the robot can be tested more regularly.

The user should be able to perform a number of operations with the robot without having to open the
cover. This includes turning the robot on and off, resetting the cRIO, switching between automated and
controlled, connecting a mouse and keyboard to the On-Board Computer and observing real time data from
the On-Board Computer.

Design Description

The following sections contain comparisons of particular solutions to the listed performance specifications
and a synthesis of the optimal solutions. The final synthesis of solutions was then compared to the per-
formance specifications to ensure that individual solutions to performance specifications do not contradict

other specifications.

Camera Position

Two thoughts for improving the field of view would be to increase the viewing angle of the camera by
using a different lens, by changing the position of the camera, or by a combination of the two. However,
changing the lens would not actually improve the observable distance from the front of the robot. This is
instead determined by the relation between the position of the camera and the furthest forward portion of
the robot.

The following analysis is done based on the assumption that only one camera is used, since only one is
required for line following. Stereo vision could be implemented with two cameras, but it is not immediately

necessary for the success of the robot, as discussed later.

Figure 2.2 shows a silhouette of the chassis with annotations for some of the key measurements needed

to calculate the field of view and compare camera locations.

Using simple trigonometry, the distance from the front of the robot to the bottom edge of the field of

view can be described by equation 2.1
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P = Point of limitation - the highest obstacle lim-
iting the camera field of view

H = Height of camera from the ground

L = Distance from the center of the back wheels
to the furthest forward part of the robot

h = Height of P from the ground

{ = Lateral distance from the camera to P

xz = Lateral distance from center of back wheel to
the camera

d = Distance from the furthest forward part of the
robot to where the edge of the field of view

Figure 2.2: Measurements for describing meets the ground
the position of the camera and calculating
the distance of the field of view from the Table 2.2: Description of the variables for camera
robot position dimensions
hl
d=—=+4+I1-1L 2.1
L (21)

There are two independent variables in this equation, namely the horizontal position of the camera [
and the vertical position H. The horizontal position has a linear relation to the distance while the vertical
position has an inverse relation. This means that as H and [ increase and decrease respectively, changes in

[ will eventually have a more significant effect on d than changes in H.
Table 2.3 shows different reorientations of the cameras, the advantages and the disadvantages.

Based on this basic analysis, it was determined that the cameras should be moved forward. It was also
determined that the vertical position of the camera should be adjustable in order to experiment with different

camera angles and the relation to video quality.
Figure 2.3 compares the location of the camera in the old design, the new design and a modified new
design.

A couple other considerations for the location of the camera is how the angle and position of the camera
affects the maximum viewable distance as well as the distance at which the two white lines ten feet apart
can be seen. For example, if the camera is positioned higher above the ground, it will have an almost vertical
angle to view just over the front structure of the robot. This would mean that the top edge of the field of

view would be closer to the robot than a camera position with a more horizontal angle.

Based on the given field of view, the extent of the camera image can be calculated. The current camera
and lens configuration gives a horizontal viewing angle (Figure 2.4(b)) of 53.13 deg and a vertical viewing

angle (Figure 2.4(a)) of 41.11 deg. A representation of these angles is shown in Figure 2.4.

By adjusting the height and angle of the camera, the field of view can be adjusted as future design

specifications may dictate for effective line following.

Camera Mount Design

The camera mounts were designed with a few specifications in mind.
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Instance

Advantages

Disadvantages

e No changes needed
e Aesthetic orienta-
tion

e d; is too large

e d is shorter than
dy

e Can be installed on
current structure

¢ Raises the center of
gravity (CG)

e Takes away from
low profile design

e d3 is much shorter
than d1

e Moves CG closer to
center of polygon
of contact

e Requires new
structure  further
forward

o Takes away from
low profile design

Xy

e dy is shorter than
dy

e Moves CG closer to
center of polygon
of contact

e Lowers CG

e Requires new
structure  further
forward

Table 2.3: Comparison of possible configurations for the camera mount on Prometheus

e The mounts must be able to locate the cameras in an optimal location as indicated previously.

e The mounts must be weatherproof.
e The mounts must be expandable for use with future stereo vision research.

e The two cameras must be mounted at the same height on the same plane.
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Figure 2.3: Comparison of the location of the camera in the old and new Prometheus designs.

e The two cameras must have independent yaw positioning.
e The height, yaw, pitch and baseline must be adjustable.
e Once cameras are set in a position, they must not slip.

e Incident light and reflections must be minimized.

With these specifications, a few different designs were sketched. To meet the first specification, the
cameras would have to easily mount to the new cover design. As such, the idea was to have an aluminum
plate on the top of the cover to which various devices could be affixed. This in itself was not particularly

limiting in the design.

Weatherproofing the cameras was another issue. There could be no cover directly in front of the lens
and the cable must be able to reach the inside of the computer compartment on the robot. Previously the
two cameras were contained within one Lexan box with an open front, with the cameras set back far enough
that they would be protected from all but practically horizontal rain. It was determined early that each
camera should have a separate weatherproof housing so that individual yaw positioning might be adjusted
more easily without potentially having to open an all-encompassing cover. This would also decrease the
amount of materials necessary. In order to have an adjustable baseline, a single box would have to cover all
configurations of the baseline. With individual covers, this could be adjusted more easily without having to

initially cover the whole span.

Previously the cover was made from a rectangular box of Lexan. It was determined that this was not the

optimal method. Lexan lets in too much light which can cause glares or other problems that would affect
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(a) Side view of Prometheus’ viewing angle (b) Top view of Prometheus’ viewing angle

Figure 2.4: Side and top view of Prometheus with the field of view displayed in red

the view of the camera. Therefore an opaque cover was decided upon. Also, it was decided that the inside
of this cover would be colored a matte black to further reduce any glare from incident light. It was also
determined that a rectangular box was not the most optimal for manufacturing. Instead, a cylindrical tube
was decided upon. This would decrease the number of joints that would need to be weather sealed. Also,

this would decrease the total number of parts to be made.

The distance from the front of the camera mount to the lens is based upon the angle of view of the
camera. This distance was determined to place the camera as far from the open face of the cover without

any of the cover showing in the image from the camera.

The adjustable nature of the camera mounts was a design consideration with many possible options. The
most complex design would involve driven actuators that would adjust the angles and height of the cameras
as needed. This idea was quickly abolished because of not only the time and effort needed to implement such
a system, but also because of the problems with repeatability in the actuators and the necessary mechanical

devices to ensure the fixed location of the cameras during operation.

Ideally the cameras need only be adjusted on a very infrequent basis. For example, once there is working
code for the line detection, the position of the cameras should not be changed, because the code will then
have to be changed. Because of this, a much simpler design was acceptable. A manually adjustable device
would be simpler to build and implement, have potentially better repeatability and would require no further

power consumption.

For height adjustment it was determined that fixed height posts that could be exchanged would be more
practical than telescoping poles. Stability in the camera mounts is important and every joint of a telescoping
pole is just another point that may increase the flexure of the overall pole. Again, because of the infrequent
nature of height adjustment, it was found that it was not necessary to have immediately adjustable height.
One problem is that to have a wide variety of heights, much more material is needed. Because of this it was
determined that a short set of posts and a long set of posts would be made initially and future posts could

be made to length as the need might arise.

Adjustable yaw and pitch were a more difficult problem. In order to make these lock into repeatable
positions it was determined to use geared teeth. The simplest approach was to have geared teeth such that
when a bolt was loosened, the cameras could be rotated, but when the bolt was tightened, the mounts would

no longer slip. The solution was the use of planar knurled plates as seen in Figure 2.6. These matched
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knurled circles on a plane would allow for adjustability in discrete units. This also makes the position of
the knurling repeatable for both the yaw and the pitch. The teeth of the planer knurling are flat on the top
with the cut between each, sloping up toward the middle to ensure full contact between the two sides even

as the radius decreases toward the middle.

Pitch

Figure 2.5: New camera cover design adjustable for yaw, pitch, height and baseline

The radius of the circle, the depth of the teeth at the outer edge, the length of the teeth and the angle
between teeth are all interrelated variables that define the geometry of the knurling. Since the knurling in
this case would not be subjected to extreme stresses, and a small angle between teeth would allow for a
more precise range of motion, it was determined to use an outer radius of 0.5 inches with teeth six degrees
per tooth. Based on this the geometry for the depth of the tooth at the outer edge was defined. Assuming
90 degree teeth for ease of manufacturing, the only dimension left was the length of each tooth. An initial
prototype was made with 0.063 inch teeth, but it was determined that in order to distribute forces better,
the teeth should be made longer. Each tooth was therefore made to be 0.188 inches long. This increased the

surface area for contact between the two pieces of each knurling and decreased the maximum stress.

Figure 2.6: Planar knurling used to keep rotational joints from slipping
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GPS Location

The location for the GPS of the 2010 Prometheus design included the main receiver inside the cover and
an antenna attached to the back approximately 3 feet above the top of the robot. Originally, the thought
was that this could be repeated. However, when it was determined to use a different GPS, as discussed in
the Sensor section, the antenna and receiver were part of the same unit. The receiver unit was therefore
larger than the previous GPS antenna and the thought was that it would be unwieldy if it was placed as

high as the antenna on the old design.

The plan for the new cover design included the GPS on the outside of the robot, sitting on the top
plate of the cover. This position was tested and it was found that the receiver did not receive signals from
this position. By keeping the receiver plugged into the computer and slowly moving it around the robot, it
was determined where the receiver had satellite signals and where it did not. It was found that within one
foot of the top of the robot, the receiver had a signal, but on the top of the cover it did not. Moving the
receiver behind or in front of the camera mounts or the camera mount posts also interrupted the signal as
seen in Figure 2.7. This signal interruption was attributed to the metal frame, camera mounts and posts

interrupting the satellite signal.

=\

Bad GPS Final _—"" 1~

Receiver =
Location

= Signal

Figure 2.7: The locations where satellite signals could not be received indicated in red at left, and the final
location of the receiver at right

The most reasonable location for the GPS was determined to be the top of the camera mounts as seen

in Figure 2.7. An attachment was made to fit over the camera mounts and secure the GPS receiver.

Modularity

In order to accommodate future expansion and reconfiguration of Prometheus, it is important to have
locations on the chassis where more sensors or devices can be added. By moving the cameras forward, it
was determined that the back portion of the chassis would make an ideal place for added devices. Since
most additions would be external, maximizing the open area on the back of the structure is an important
factor. Also, creating a modular interface with which devices can be connected is also important. Lastly,

any devices added to the structure would be considered an added payload. In order for the additional weight
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to minimally affect the performance of the robot, the location of the center of gravity (CG) of the addition

should closely relate to the location of the entire structure’s CG.

Based on these criteria, it was determined that the most logical solution would be to create a flat-bed
over the back half of the chassis. This allows for an open environment for moving or oversized components.
This also places the additional weight over the batteries and the motors, two of the heaviest components,
minimizing the effect of the change in the position of the CG. The flatbed would also have regularly spaced

T-slots that would allow for easily attached and positioned components.

The flatbed has room for the attachment of different devices. This can include a UAV landing pad, a
robotic arm or other structures. The current attachment for the robot is a lawnmower for the ION Robotic
Lawnmower competition. This device uses a four-bar linkage system to keep a platform of five flail-head
weed trimmers level with the back of the robot. Adjustable wheel heights allow for the adjustment of the
height of the cut. The four bar linkage is bolted to t-nuts in the extruded aluminum of the back platform.
Figure 2.8 shows a possible configuration with a UAV landing pad.

Figure 2.8: Prometheus with a Unmanned Ariel Vehicle (UAV) landing pad attached to the modular
payload area

In order to keep the components protected, the frame of the cover will be covered with a waterproof
material. Lexan sheets will be used to cover most surfaces. With the side panels and back opening, it will be
important to create a weatherproof seal on these edges using a combination of weather stripping and tight

latching mechanisms.

The new design will use the same principles, except that the side panels of the front cover and the flatbed
will be able to open. Also, the external interface on the back will have a sealed sliding door. Because of this,
most joints will require weather stripping or some other gasket material between the polycarbonate and the

aluminum frame.

21



Materials and Manufacturing

The material for the cover was chosen to reflect the success of the materials used in Prometheus 2010.
This includes an aluminum frame with a polycarbonate shell. One possible construction of the frame would
be with extruded aluminum t-slot material. This would allow pieces of the cover frame to be interchanged
more easily and would allow different items to be attached to the frame more easily. An investigation was
conducted into the feasibility of using this type of material. Figure 2.9 shows a corner joint of the frame

with the three different pieces highlighted with different colors.

Figure 2.9: Corner joint of the frame

Figures 2.10 and 2.11 show a fixture that would use bolts in the t-slots to hold the joint together. This

would create a fixture as seen in Figure 2.12.

Figure 2.10: Extruded t-slot joint fixture Figure 2.11: Extruded t-slot joint fixture viewed
viewed from the top from the bottom

This type of a fixture, representing just one joint, in the frame would make the manufacturing very time
consuming. Also the odd angles would need to be manufactured with a fairly high tolerance in order to

create a firm joint with no gaps.

Because of the difficulty in manufacturing, it was decided to make the frame from welded one inch square
aluminum tubing with a 1/8 inch wall thickness. This is the same construction method as was used for the
chassis. This allows for a looser tolerance when cutting the lengths and angles of the pieces and will create

a joint that is as strong if not stronger than the members.
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Figure 2.12: Fixture for one joint of an extruded t-slot frame construction

The polycarbonate shell will use 1/4 inch thick panels rather than the 1/16 inch thick pieces used
previously. Many of the panels will have some sort of structural task including the side panels acting as
doors, the back panel securing a sliding door and the bottom of the flatbed protecting the motor compartment
from the payload. Any seams between the panels will be fused together using methylene chloride. These
fused seams are waterproof and increase the strength of the joints much as a weld does on a metal joint.

Steered Front Wheel and Drive Train

Two potential solutions exist to fix the shaft more securely to the pulley. The first is to simply use a
thread lock adhesive to keep the set screws from loosening. Another standard method of fixing axles to
wheels is to use a keyway. This involves having a “key” that fits into a slot on both the pulley and the shaft
as seen in Figure 2.14. One advantage to the keyway is that the force applied on the shaft by the pulley is
distributed the length of the key as seen in Figure 2.13. This means that the weakest part of the connection
is based on the shear strength of the three parts over the length of the key.

Figure 2.13: A two dimensional comparison of force distributions for setscrews on a shaft and a keyed
shaft. The force distribution is depicted by the red arrows, and the direction of rotation is indicated by the
grey arrow.
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Keyed Driven
Shaft Pulley

Figure 2.14: Keyed shaft

With a set screw, large torques can cause damage to either the screw or the shaft. More deformation
leads to more play in the system which causes more shocks, which continue to compound the problem of
deformation. The stresses applied to a set screw are distributed over the contact area of the end of the screw
with a concentration at the apex of the curve. Stresses applied to a keyed shaft are distributed over two
faces of the key which have significantly more surface area than the end of the set screw. Even though there

are sharp corners in the key slot, the stress concentrations are less than for the apex of the set screw surface.

The new maximum speed limit on the course is 10 miles per hour, up from 5 mph last year. The drive
train of Prometheus was made to limit the speed to approximately 5mph. If the team is to increase the

speed to approach the new speed limit, the drive train must be reconfigured.

The maximum speed of the motors is 238 rpm. Using twelve inch diameter wheels, Prometheus must

have a wheel speed of 280 rpm to travel 10 mph. If Prometheus is to travel at this maximum speed when the

motors are spinning at the maximum speed, the conversion % = % = 0.85 can be used to determine

the gear ratio. This is compared to the current gear ratio of 1.6.

The problem with using that particular case for determining the gear ratios is that the motors would
then draw approximately twice as much current for the same speed. This could prove to be an unacceptable

alternative.

2.2.2 Usability Improvements
External Interface

After extended interaction with Prometheus our team developed a detailed list of components that

compose the external interface. The final design has all the following Input/Output connections:

USB Ports

e External connection to Mouse, Keyboard, Webcam and any other peripheral

Ethernet Connector

e For wired connection to the robot network, allowing higher speed connection.
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e Potentially used to debug the wireless network

Computer power switch

e For starting/resetting the computer without exposing Prometheus

cRIO power switch

e For starting/resetting the cRIO without exposing Prometheus

LIDAR, Monitor and GPS power switches

e For starting/resetting individual components

Computer and cRIO power LED status

e Quick visual check

12V connector

e External power supply for a wide range of peripherals

Battery voltage display

e To check the battery life on the current version you need to physically open the robot and place
a multimeter on the batteries.

e Either digital or analog

Figure 2.15: External interface concept design

This external interface panel will be easily accessible, as well as weatherproof. This will be achieved by
isolating the connections, switches, and status display through a transparent window with cable slots at the
bottom. The exterior robot interface will ultimately help Prometheus become the independent, user friendly

research platform we envisioned.
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Monitor

Based on the requirements listed previously we decided an outdoor commercial use touchscreen monitor
would be the most ideal product for our application. After extensive research and comparison we decided
on a 3M MicroTouch Display C1500SS (15”) Serial. This decision was mostly made due to its comparably
low price range versus the many desirable features that are incorporated in this product like 12V DC input,

ruggedness and a simple serial interface. More information can be found in Appendix D.

Figure 2.16: Commercial weatherproof 3M Touchscreen Monitor

As of now the touchscreen capabilities have not been implemented, and the touchscreen is only being
used as monitor. This setup in conjunction with a mouse and keyboard already allow us to program directly
on the robot. The touchscreen facilitated tasks such as analyzing the line detection effectiveness, debugging

waypoint navigation and evaluating the local map.

Remote Control and Wireless Emergency Stop

Ultimately we opted for a Futaba 6-channel 2.4GHz Transmitter and Receiver. The receiver has a very
small footprint, weighing only a few grams. Because the communication works at 2.4 GHz, its position on
the chassis has less effect on the signal strength than other lower frequency solutions. The control layout for

Prometheus’ new remote control is labeled on the image below:
We choose this controller because of several of the advantages it has, including:

e 2.4 GHz FHSS communication, avoiding problematic interference from other components (problem
discussed in Appendix B)

e G-channel permits future expandability

Rechargeable battery
e Simple and reliable connection

o Fast start-up time

In a normal application this receiver would control servos on a RC helicopter using Pulse Width Modula-
tion (PWM) signals at 50Hz, the duty cycle of each pulse directly correlates to the position of the controller.
In order to capture this information with the cRIO we are inputting the signal into a digital I/O pin of the
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Figure 2.17: Futaba 2.4GHz 6-channel Transmitter

FPGA. The length of each pulse is stored in a variable, which is then used to set the motor speeds, the

turning angle, and the emergency stop signal, among other features.

The controller layout is as follows: Channel 5 switches Prometheus between autonomous and manual

mode, channel 1 and 2 are for manual driving, and channel 6 is connected to the wireless emergency stop.

Figure 2.18: Futaba 2.4GHz 6-channel Receiver

Visual Cue

We added strips of weatherproof RGB LED to Prometheus’ chassis. The robot will glow specific colors
dependent on the cRIO state, and consequently, the robot state. This will be visible during daylight, and
create a remarkable effect during the night.

The visual cue will instantly display the status of the robot. This system can also be very useful when
dealing with known fault status, such as low battery and network communication errors. The current set up

is seen in Table 3.

Prometheus Status | Color

Red Wireless E-stop locked
Blinking Green Autonomous mode
Blue Test mode

Purple Manual control
Yellow Low battery

Table 2.4: Visual cue states
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The driving circuitry for this set up will use a 3-channel 5V Pulse Width Modulation (PWM) signal from
the cRIO to drive the LEDs using the 24 V available. The driving signal will vary the duty cycle of the
PWM, directly controlling the light intensity of each color, this allows us to generate an infinite amount of

colors and patterns with little coding necessary.

The LED strip has a common positive, so the design will use three fast switching N Channel MOSFETS
with the supporting circuitry to take the cRIO input and drive the lights. The RGB LED strip consumes 3

watts per feet, so assuming 4 feet of lighting, this set up does not consume more than 12 Watts.

T |
— 12V
= 01
Red- 5 Py R1
5000
Common + 5C1
Red
0z Green |
Green- 5% P B2 E‘ Blue |
5000 RGB LED Strip
03
Blue- 5% Py R3
5000

Figure 2.19: 5V PWM driving circuit for RGB LED strip

The ease of use of the visual cue will save us time in the testing and final phases, hopefully giving us the

edge to succeed at the competition.

2.3 Results

The following is a discussion of the results of the design work for the robot structure improvements.

Based on the previously discussed designs, these are the resulting implementations.

2.3.1 Chassis Mechanics

The cover was designed and constructed based on the analysis performed. A model of the entire new
cover was created using SolidWorks. The frame components were cut from one inch square 6061 aluminum
tubing with 1/8 inch walls. This was welded together using a TIG welder. The back cover frame was welded
from the same material with anodized 6061 extruded T-slot bars welded at 4 inch intervals across the back.
The top plate was cut from a 1/4 inch thick aluminum plate. The frame for the external interface was
machined from aluminum and welded to the cover frame. The frame was bolted to the main chassis of the
robot and the top plate was bolted to the frame. The polycarbonate panels were cut from 1/4 inch material
to fit to the welded frame. These panels were then bolted to the frame. The panel covering the back electrical
components was hinged and weather proofed to provide access to these components. The external interface
was made from polycarbonate for the sides and laser cut acrylic for the faces. A number of faces were laser

cut as the definition of needs for the external interface evolved. The external interface was then bolted to
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the welded frame. Pneumatic lifts were installed on the back cover of the new design to control the lifting
and lowering of the cover and to keep it in position when the batteries are being changed. Latches were
also installed to keep the cover down. The camera mounts were machined using CNC mills with the code
generated directly from the models created in SolidWorks. The cameras were installed in the mounts and
the mounts were attached to the robot. By simply viewing the output from the cameras, the positions were
adjusted and marked for two different positions, 4 inch posts and 30 inch posts. The LIDAR was flipped
over and the bumper lowered. This helps protect the LIDAR better from curbs and eliminates the detection
of thick grass as an obstacle. A frame was built for the touchscreen monitor to hang the monitor just within
the side of the robot. The screen was attached to the frame and the frame was bolted to the main cover
frame. A panel was made between the computer compartment and the front wheel to separate the two. On
this panel a fan was mounted to aid with the cooling of the computer compartment. With the two side
doors of the cover closed, this will be the main channel for airflow to the outside world, an important aspect
of keeping the computer components cool. The GPS was originally installed on the top of the plate on the
cover. Unfortunately, this was a bad position for receiving satellite signals and therefore a frame was built
over the top of the camera mounts to hold the GPS. An acrylic box was made for the IMU to attach to
the back panel of the robot. The device was originally held in place with metal screws, but these proved to
interfere with the IMU signal. So, they were replaced with nylon hardware. The front wheel of the robot
was disassembled and the old shaft was cut off. The new shaft was welded on to the wheel yoke and the
driven pulley was broached to receive the key. The supporting blocks for the shaft were re-machined to use
new bearings including the heavier thrust bearing. With the replacement of thinner pieces of material with

thicker, more rigid pieces, a new structure for the front wheel encoder was machined.

2.3.2 Usability Improvements

The usability improvements made on Prometheus proved to be very effective during field tests. The inter-
action between the many different systems of the platform is substantially more symbiotic. The enhancements
allow quick testing, swapping, and comparing of different algorithms. It also permits us to identify software

bugs and hardware malfunctions much faster than before, ultimately decreasing development time.

The external interface allows a direct interaction with Prometheus, without exposing any components
to the environment. The USB connections are used constantly by a variety of peripherals, including thumb
drives, a mouse, a keyboard, and webcams. The switches are also extremely useful when it is necessary to
reset or power on or off the computer, cRIO, and LIDAR. Lastly, checking the voltmeter became second
nature for our team, which means the batteries never reach a critical level. Furthermore, there were little
to no incidents of loose wires or bad connections during all the testing. A substantial amount of time was
spent organizing and aligning the great amount of cables and connections inside Prometheus. In order to

avoid disconnections due to vibrations, zip ties were used to secure any loose wiring to the chassis.

The visual cue also became an essential component of Prometheus. The different colors are clearly
associated with Prometheus’ respective states, and the user can glance at the vehicle and know what to
expect from its behavior. In addition, the low battery emergency state is a great warning when the batteries

are reaching critical levels.

The addition of the monitor to the chassis vastly improved field testing. The ability to quickly analyze the

line detection, local map, and waypoint navigation proved to be crucial. There were many times during the
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Figure 2.21: Different visual cue colors representing different states

test phase in which our team would walk alongside the robot and catch software bugs simply by looking at
the screen. As mentioned earlier, due to time constrains, we have not been able to implement the touchscreen
capabilities of the monitor. This could be considered a disadvantage because in order to interact with the

computer a keyboard and mouse need to be plugged in.

Moreover,future efforts can be directed toward creating a graphical user interface for the monitor that
can quickly display all the status information from a variety of different systems. A given user can select
between multiple tabs, each corresponding to a different system of the robot. For example, the ”position”
tab can display the current input from the GPS signal, as well as IMU information, while the ”vision” tab
can display live video stream from the on board cameras, or the Hough transform results if we are dealing

with line detection. The variety of scenarios this tool can be applied to is almost endless.

Lastly, the remote control worked flawlessly. We drove Prometheus on an open field beyond 100 meters
without a single communication problem. The emergency wireless e-stop is very reliable. Moreover, the
switch between manual and autonomous modes proved to be especially practical. That is because when
testing we can switch from autonomous to manual mode, move Prometheus freely, and switch back to

autonomous, all without touching the computer.

Current sensing is the one usability improvement we were not able to explore due to time constrains.
In order to keep track of Prometheus’ performance, supervising the power consumption of each individual
system is beneficial. To do so it would be necessary to implement current sensors on the main distribution

lines.
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Figure 2.23: Prometheus touchscreen and remote control

For DC applications there are two major families of sensors, Hall Effect sensors and resistor sensors.
Hall Effect sensors are advantageous because they are physically isolated from the circuit being tested. The
charge flowing through a wire (current) creates a magnetic force in the form of concentric circles around the

wire. The Hall Effect sensor measures this flow using a coil wrapped around the wire being measured.

The resistor sensor on the other hand puts a very high resistance (0.5MOhm, as an example) in shunt
with the circuit being tested, and measures the voltage drop across this resistor. The voltage drop is directly

proportional to the current, assuming the resistor is behaving independent of temperature.

Current sensing benefits the research platform aspect of Prometheus. The ability to calculate the currents
of different components would allow us to graph the overall power consumption of the robot in different
conditions. We would do so by placing one sensor in each major power consumer line: the motor drivers,
the On-Board computer, the cRIO, the LIDAR and the router.

This information can be fed in real time into the cRIO while Prometheus undergoes a variety of conditions;
the power consumption can then be plotted in real time through the touchscreen, and logged with a time

stamp for later analysis.
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2.4 Conclusion

The designs for the robot structure were successfully implemented. This section briefly describes how

the design specifications were met.

2.4.1 Chassis Mechanics

The mechanical aspects of the cover design meet the specifications outlined by the team. The cover was
successfully constructed based on the plan. The sensors including the LIDAR, cameras, IMU and GPS are
all in positions for favorable use. The user interface is easily accessible. The modular payload area has been
tested. Besides carrying more than 150 pounds of direct load, the payload area has been used as a hitch
for towing three office chairs with developers and incorporating a lawnmower design for the ION Robotic

Lawnmower competition.

2.4.2 Usability Improvements

In conclusion, the usability improvements substantially increased the development efficiency. Field testing
now runs significantly smoother because of the many different ways the team has to interact and understand
what is truly happening with Prometheus’ many different systems. Moreover, when hardware or software
problems come up, the development team can quickly pinpoint it, saving time and patience. One might say
that a considerable amount of time was spent on usability improvements, but our team believes that the
usability improvements gave Prometheus major advantages. These persistently decrease prototyping time,

and therefore increase overall work throughout.
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Chapter 3

Sensors

Prometheus uses various sensors to complete all the required tasks at IGVC, which include localization,
obstacle avoidance, and line detection. In terms of localization, the robot combines data from a Global
Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), and wheel encoders. In order
to avoid the various obstacles in both the Autonomous Challenge and the Navigation Challenge at IGVC,
Prometheus uses a light detection and ranging (LIDAR) sensor. Prometheus also uses two cameras to
recognize and follow or avoid the white lines that outline the courses at IGVC. The LIDAR is used in its
same capacity as it was in 2010, and therefore only obstacle detection methods are dicussed later in this
paper. The cameras on Prometheus are the same from 2010, but there was a change in how exactly they
were used and where they were located. Because the hardware did not change, we have only focused on
line detection methods detailed later in this paper. The GPS receiver and IMU are the newest additions to

Prometheus, which are outlined in detail in this chapter.

3.1 Global Positioning System

Global positioning system “provides specially coded satellite signals that can be processed in a GPS
receiver, enabling the receiver to compute position, velocity, and time” (Dana, 2000). A differential GPS
receiver differs from a GPS receiver in that it is more accurate through error correction techniques. A DGPS
receiver is a vital component of the project because of the navigation and localization assistance it provides.
A DGPS receiver would allow Prometheus to measure its current position in terms of latitude and longitude.
Knowing this helps greatly in the IGVC Navigation Challenge because the robot can now determine how far
it is from the waypoints, as well as override incorrect measurements taken by other sensors in the system

aiding in localization.

The IGVC Navigation Challenge waypoints are contained within circles with a minimum diameter of two
meters. With the waypoint located at the center of this circle, one meter of leeway is located around the
coordinate provided for that waypoint. This means that a DGPS receiver with sub one meter accuracy is

ideal for implementation on Prometheus.
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Brand Update Rate | Size Position
MediaTek MT3329 GPS | 10Hz 16 mm x 16 mm X 6 mm <3m
Sokkia Axis3 DGPS 5Hz 19cm x 12.5¢m x 5.1cm <lm
Trimble AG252 DGPS 1,5, 0r 10Hz | 29.72cm x 6.93cm x 30.61lcm | <lm

Table 3.1: Comparison of specifications of three of the DGPS receivers that were considered for use with
Prometheus. A more complete table can be found in Table D.1.

3.1.1 Background

Since a functioning and accurate DGPS receiver is critical for Prometheus in terms of localization, we
have researched several DGPS receivers in order to compare the specifications to that of the formerly used
Sokkia Axis3. Table D.1 lists all of the DGPS receivers that appear to be similar or better when compared
with the Sokkia Axis3.

All of the DGPS receivers listed here have very similar specifications. On paper, the Sokkia Axis3 and
Trimble AG252 appear to have the best accuracy. Our desire is to use the GPS receiver with the highest

accuracy and update rate, specifically 5Hz or more.

3.1.2 Methodology

In order to determine which GPS receiver would provide us with the best results, we performed testing
on all of the units we had in our possession: Sokkia Axis3, MediaTek MT3329, and Trimble AG252.

The desired results to be obtained from testing were data logs recorded by the GPS receiver, for use in
later analysis. The testing procedure was to take each GPS receiver (one at a time) out to Institute Park
and place it in a manner such that it would remain stationary throughout the data logging session. The

GPS receiver was plugged into a laptop and configured to log its data in Putty.

After all data was logged, each set was analyzed using Matlab code given to us by the 2010 MQP team.
The code produced a plot that was a visual representation of how accurate the results were and several

different error meaurements.

Once data was acquired from each, analysis could be performed on the results. With each set of data,
three different types of error values were calculated. Root Mean Square (RMS) error value represents the
amount of accuracy one can expect to receive 67% of the time, or in other words, on average. The 50%
Circular Error Probable (CEP) represents a more desirable amount of accuracy, while the 95% CEP is often
regarded as the worst case amount of accuracy. These values are calculated using the respective percentage
of the returned values. Since we were looking to use the GPS receiver with the lowest error, these values

were important to consider when comparing the three GPS receivers.

In order to calculate these errors, the first step was to find the average x and y positions. These were
calculated as seen in Equations 3.1 and 3.2. For reference, Easting is x and Northing is y of a given latitude,

longitude coordinate.

EaStingtotal

Xaverage =
n
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Northingiotal

Y(werage = T (32)

The next step was to calculate the general error, which was done using Equation 3.3.

error = \/((Easting — Easting0) — Xaverage)? + ((Northing — Northing0) — Yaverage)? (3.3)

This error was then simply multiplied by one of three fractions to get the respective errors. To calculate
the 50% CEP Error, we multiplied by .5. To calculate the 95% CEP Error, we multiplied by .95. To calculate
the RMS Error, we multiplied by .67.

3.1.3 GPS Receiver Results

All data logged had values for, or which could be used to calculate, the latitude and longitude at which
the GPS was located. The files containing the data were read by the previously mentioned Matlab code and

used to calculate the errors, as well as plot the recorded positions.

Sokkia Axis3

The Sokkia Axis3 was the first GPS receiver taken out for testing. These first set of measurements were
obtained differently than all other GPS logging we did because the GPS had known accuracy problems. We
visited a Department of Public Works GPS benchmark on the corner of Highland Street and Park Avenue
in Worcester, Massachusetts. This provided us a known latitude and longitude that we could compare our
results to. Figure 3.1 is a plot of the positions measured by the Sokkia at the benchmark on September 30,

2010, over a period of fifteen minutes.
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Figure 3.1: Plot of Sokkia Axis3 DGPS data on September 30, 2010
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The data fit the following errors: RMS = 934.433 m, 50% CEP = 652.045m, and 95% CEP = 1414.717 m.
Based on these poor results, we decided that we should obtain a new set of data from the Sokkia Axis3 in a

more open environment.

Figure 3.2 is a plot of the data obtained on October 7, 2010. This set of data was retrieved in Institute

Park, in a more open area than where we previously visited, over a period of ten minutes.
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Figure 3.2: Plot of Sokkia Axis3 DGPS data on October 7, 2010

The data fit the following errors: RMS = 693.951 m, 50% CEP = 566.339m, and 95% CEP = 1538.323 m.

MediaTek MT3329

The MediaTek MT3329 data was logged next. Figure 3.3 is a plot of the data obtained on October 7,
2010. It was measured over a period of ten minutes, at approximately the same location in Institute Park

where data from the Sokkia was logged.
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Figure 3.3: Plot of MediaTek data on October 7, 2010

This data fit the following errors: RMS = 3.049 m, 50% CEP = 1.918 m, and 95% CEP = 4.301 m.

Trimble AG252

Finally, the Trimble AG252 receiver was taken out for measurements. Figure 3.4 is a plot of the data
obtained on November 6, 2010. It was measured over a period of fifteen minutes, at approximately the same

location in Insitute Park where data from Sokkia and MediaTek was logged.
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Figure 3.4: Plot of Trimble data on November 6, 2010

This data fit the following errors: RMS = 0.985m, 50% CEP = 0.717m, and 95% CEP = 1.373m.

We also tested the Trimble DGPS receiver at the WPI Football Field in the winter, once we downloaded
the OmniSTAR HP subscription. According to OmniSTAR’s website, the HP correction service has about

10 centimeter accuracy. We obtained approximately thirty minutes of data at the field on January 16, 2011.
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Figure 3.5 is a plot of the data we retrieved.
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Figure 3.5: Plot of Trimble data on January 16, 2011

This data fit the following errors: RMS = 0.240 m, 50% CEP = 0.199m, and 95% CEP = 0.567 m.

The results obtained from all three GPS receiver are depicted in Table 3.2.

RMS 50% CEP | 95% CEP
Sokkia Azis 8 | 693.951m | 566.339m | 1538.323m
MediaTek MT3329 | 3.0489m 1.918 m 4.301 m
Trimble AG252 | 0.239m 0.199m 0.567m

Table 3.2: GPS Error Measurements

3.1.4 Conclusion

It can be seen from our results that the Sokkia has about 690 less meters of average accuracy than the
MediaTek and Trimble. We hoped to see better results from the Sokkia DGPS data than the 2010 MQP
team saw at the IGVC, but there appeared to be an unknown error with the device. The measurement range
was nearly two miles and the accuracy was nowhere near acceptable. Based on this data, we came to the

conclusion that the Sokkia Axis3 would provide no improvements to the performance of Prometheus.

Further comparisons between the MediaTek and Trimble show that the MediaTek has 2.063941 less meters
of average accuracy. Based on consistent performance by the Trimble, and a subscription that has further
improved this performance, we have selected the Trimble AG252 GPS for implementation on Prometheus. We
believe that this GPS receiver will allow Prometheus to be a strong competitor in the Navigation Challenge
at IGVC.
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3.2 Inertial Measurement Unit

An IMU is a sensor that measures velocity, acceleration, and orientation in the x, y, and z directions
using a combination of accelerometers and gyroscopes. In 2010, Prometheus had a magnetic compass on
board which provided heading information. An IMU would provide Prometheus with accelerations in every
direction, including rotational acceleration, and would also provide the robot’s heading. An IMU would
appear to be a great addition to Prometheus, due to the possible high accuracy the device, not to mention
that it would make Prometheus a much better competitor at IGVC. With a high accuracy IMU in conjunction
with the wheels encoders, Prometheus would essentially know its absolute position and velocity without the
help of GPS data. We have researched several different IMUs offered at PNI Sensor Corporation and
Honeywell. We also were able to obtain a sensor from the Mechanical Engineering department at WPI to

test, in order to determine if that particular system would be helpful in the development of Prometheus.

3.2.1 Background

PNI Sensor Corporation manufactures high end sensors for many applications, including robotics. In
order to determine if a PNI sensor can fill the void left by not having an IMU, we have compared several
of their sensors. There are some important considerations to keep in mind when installing any of the
PNI compasses or for that matter, any electric compass. The compass should be kept away from any large
masses of ferrous metals, large electric currents and permanent magnets. It should also be kept away from the
payload area, especially if there is the chance that the payload would be a large ferrous object, a permanent
magnet or have a large electric current. It is also important to try and isolate the devices from excessive

shock, oscillation or vibration.

The first, most basic model offered is the CompassPoint V2Xe. This was the device used by the 2010
MQP team. It is a 2-axis compass module with an onboard microprocessor. The calibration is stored in
non-volatile memory which allows the calibration to be saved even after shutdown. The compass also has
both hard and soft iron correction which allows the compass to account for local static effects on the magnetic

field. This particular compass also has very low power consumption.

The CompassPoint Prime is a 3-axis compass using magneto-inductive sensors and a 3-axis MEMS
accelerometer. The calibration includes hard and soft iron correction along with a quality of calibration
score which allows the user to determine if the calibration is reasonable. This device also has several features

that can be programmed by the user including output damping, reporting units and sampling configuration.

The FieldForce TCM is a high precision compass that again uses the magneto-inductive sensors and
a 3-axis accelerometer. Four different types of field calibration can be used to help tailor the compass to
the intended use. Full range calibration is used when more than a 45 degree tilt is possible, two-dimension
calibration for measurements constrained to the horizontal, limited tilt calibration for five to forty-five degrees
of tilt and hard iron calibration only which just takes into account the effect of nearby magnetic distorting

components. This model also allows for sixteen different mounting orientations.

Lastly, the FieldForce TRAX is a high precision compass that has more features that allow for greater dy-
namic capacity. A standard unit does not have the same algorithms to mesh the data from the accelerometers

with that from the compasses to develop a complete picture of the 3D orientation of the device. Appendix
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C has a table containing the various characteristics that are provided by the manufacturer.

In order to better understand the advantages and disadvantages of a particular device, it is important
to compare it to a similar device from another manufacturer. In this case, the PNI FieldForce TCM can be
compared to the Honeywell HMC6343 Three-Axis Compass. This device uses the HMR3400 digital 3-axis
tilt compensated compass which is compared to the TCM in the following table. Based on the specifications

listed in the table, it would appear the FieldForce TCM is a better device. The accuracy is slightly better

and the range of pitch and roll is significantly higher.

The details of our comparison can be seen in Table3.3.

TCM HMR3400
. Accuracy on level 1.0deg
Heading Accuracy £60 deg 0.3 deg 4.0deg
Resolution 0.1deg 0.1deg
Repeatability 0.05deg 0.2deg

. Pitch and roll range 490 deg pitch, £180deg roll | +60deg

Pitch and Roll Accuracy 0 to £60deg 0.5deg
Accuracy £30deg to £60deg | 0.2deg 1.2deg
Resolution 0.01deg 0.1deg
Repeatability 0.05 deg 0.2deg

- Range +1.25 Gauss +2 Gauss

Magnetic Field Resolution 0.5 milli-Gauss 0.1 milli-Gauss

Input voltage

3.8-5V unregulated DC

4.8-5.2V regulated DC

Electrical Typical current 16mA 15mA
Sample rate Max 25-32Hz 8Hz
Input/Output Communication Binary RS232 UART Edge connector
Phusical Dimensions 35 X 43mm 15 x 38mm
Y Weight 68g 375

Operating tempurature

—40°C to 85°C

—20°C to 70°C

Storage tempurature

—40°C to 85°C

—55°C to 125°C

Table 3.3: TCM and HMR3400 comparison

3.2.2 Methodology

We decided that the specifications listed for the PNI FieldForce TCM were what the team was looking
for, and we contacted PNI about a possible sponsorship. They agreed to sponsor the team and sent us a
FieldForce TCM XB Evaluation kit. Since receiving the device, we have downloaded an IMU plug in on the
National Instruments (NI) website specifically for the TCM. After incorporating the code into our existing
LabVIEW project, we were able to connect the IMU to the cRIO and gather raw data at about 30 samples
per second. We specifically recorded the yaw, pitch, and roll of the device, or more specifically, the angle of
the device about the x, y, and z axis. The data from the IMU would appear to be of very high accuracy and

we are in the process of analyzing the data for further use.
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3.2.3 IMU Results

The results we have obtained for IMU testing are from the PNI FieldForce TCM XB, since we received a
sponsorship from PNI. A major task for the IMU that needed to be completed was the calibration. We did a
2D calibration once the IMU was mounted on Prometheus. This required that entire system be rotated 360
degrees at a minimum of 10 intervals, taking a reading at each step. Once this was completed, we received
a calibration score representing how well the calibration was. An acceptable score, representing the error,
is below two. It is also possible to have a rather high calibration score in situations where there is severe

interference from outside magnetic sources.

The first time we calibrated the IMU, we were inside the lab, where the magnetic field is different and
much more present than if we were outside. In order to calibrate the system, we rotated Prometheus through
a full circle, taking readings at every 22.5 degrees, 16 total steps. We did this is as accurately as possible by
marking the floor of the lab with duct tape and labeling each step. Once the full 360 degree rotation was
complete, the IMU software computes the calibration score. We received a decently low calibration score as
seen in Figure 3.6, indicating that calibration was somewhat successful. As you will notice, the calibration
score was rather high, but this was due to the indoor environment. We used this calibration throughout our

indoor testing in the winter months.

Take Sample

Figure 3.6: Indoor calibration results of PNI IMU

Once we were able to bring Prometheus outside, we needed to calibrate the IMU once again. Setting up
the 16 different steps again outside was not practical, so we chose to use less steps. We took readings at
every 30 degrees, 12 total steps. We marked the center of the circle with a small stick. We tied string from
the center to each of the points at every 30 degrees to use as a marker. We rotated Prometheus through each
of these steps, and once again received a low calibration score, around five, a little above the target, most
likely due to interference from the On-Board computer. Overall, calibration of the IMU inside and outside

was successful.

The IMU outputs heading based on an internal 3-axis magnometer. Because the output is based on the
magnetic fields around the IMU, like a compass, it can be easily deceived by local magnetic fields. During

development there was two instances in which the IMU output was clearly wrong due to external influences.

The first time it was caused by the metal screws that held the IMU casing together; after placing the
IMU inside Prometheus we noticed an absurd amount of distortion on the output, after experimenting with
the IMU position for a while we were able to determine that the metal screws that held the custom acrylic

casing was causing most of the error. Those were promptly replaced by plastic screws.

The second source of signal disturbance is caused by the ElectroMagnetic Field(EMF) generated from
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the two driving wheel motors. After extensive analysis we discovered the error to be linear to the torque
from the wheels. The heading variation is independent of motor direction, and increases linearly to the
torque of the motors. For the purpose of mitigating the error we assume the torque is directly proportional
to the known wheel speed, therefore we can subtract the predicted discrepancy in software and substantially

decrease the error.
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Figure 3.7: IMU EMF Error Compensation LabVIEW routine

This new approach substantially decreases the error generated by the magnetic field from the spinning

motor:
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Figure 3.8: IMU output with linear compensation

This filtering process can be improved by actually calculating the torque of the motors. The torque of a
dc motor is directly proportional to the current it draws. Moreover, current can be easily calculated using a
current sensor in series with the motors. Due to higher priorities implementing a current measuring system

was not possible, but this would be a great possibility for future work.
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3.2.4 Conclusion

The PNI FieldForce TCM XB has been a great addition to Prometheus thus far. It is primarily used to
collect heading information, but due to the extensive capabilities of the unit, its is much more expandable.
It has successfully be calibrated for use both indoors and outside. It has also been used extensively in
testing robot localization methods. The FieldForce TCM is a more accurate device than compass used on
Prometheus in 2010. It will allow the robot to perform more accurately and competively in the IGVC in
2011.

3.3 Encoders

Prometheus also relies on optical wheel encoders as sensory information. Rotary encoders are electro-
mechanical sensors that give position information. Moreover, encoders are simple and reliable sensors used
in a wide range of industries and manufacturing. The resolution of a encoder is based on the amount of
slits around the axle. The most commonly known rotary encoders are optical encoders, and there are three
main distinct types: simple, quadrature, and absolute encoders. The former two are able to give rotational

direction and absoulte axle position respectively.

3.3.1 Background

Optical encoders operate by attaching a disc with a series of slits cut into it onto a rotating axle. Inside
the encoder housing there is a light source and a light receiver located on opposite sides of the disc. Each time
the motor shaft rotates it causes the light receiver to observe a blink for each slit, which is then translated
as an electrical pulse. By knowing the amount of slits on a given disc one is able to calculate the amount of

degrees the shaft rotated.

Moreover, quadrature encoders have two sets of offset slits per disc, with a distinct light receiver and
source for each set; the phase shift between the two slit sets supply information on the direction of the

rotation, information that is nonexistent on a simple encoder.
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Figure 3.9: Quadrature encoder functionality, courtesy of National Instruments (enc, 2011)
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3.3.2 Methodology

The encoders being used on the vehicle are two US Digital ESP Optical Quadrature Encoders with 512
counts per revolution (slits per encoder disc). The encoders are mounted inside directly to the motor shaft,
before the reduction box, this allows for higher resolution measurement of the driving wheels. These specific
encoders have a maximum rating of 60 kHz, which is much greater than the fastest signal generated from
the motors of 15 kHz.

Figure 3.10: Us Digital ESP Optical Encoder

Encoders are by nature position sensors, but because of the relatively high speed of the signal, Prometheus
processes it in time intervals. This means that the processed information comes in as distance over time

units, or velocity.

Based on simple odometry experiments it was determined that some major error was occurring with
the encoder output. The experiments consisted of driving Prometheus a specific distance and comparing
the encoder counts, but these would show a great discrepancy between analogous runs. A test code that
would drive the wheels at specific speeds while monitoring the wheel velocity was developed to test this
discrepancy. Due to the nature of the system there are three possibilities for the error source: the physical

encoder limitations, the signal acquisition limitations of the cRIO or a software issue.

Lastly, it is also worth mentioning that the vehicle’s steered front wheel has a quadrature encoder as its
only form of position feedback. The corresponding control loop for this sensor on the other hand worked

seamlessly since the start of the project, and no changes beyond fine tuning were made.

3.3.3 Results

There were three possible error sources that were causing the encoder output to vary so dramatically.
The first step was to check each of these possibilities to determine the true source. First, the physical encoder
output was tested using an oscilloscope. Even with the motors running at the highest RPM the encoder
output was a clean square wave. This narrowed the problem to either the cRIO signal acquisition process

or a software bug.

Second, because the specific cRIO module used has a sampling rate of 9us per channel (110 KHz) it
was assumed it would be fast enough to handle the 15 kHz signal from the encoder. From here extensive
tests in conjunction with a National Instruments employee were done to try solving the issue in software.
Unfortunately, after several software iterations this approach was mostly fruitless. Therefore, the only

possible source of the problem left was some sort of overloading on the cRIO acquisition system.
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After the problem was pinpointed to be the cRIO acquisition rate the simplest solution was to down
sample the encoder signal to a lower frequency by passing it through a logic counter chip. The specific
counter chip used can divide the signal by a factor of 2,4,8 or 16. For the purposes of bringing the signal
to a frequency in which the cRIO could handle, it was divided by a factor of 8. One drawback of this
approach is the inability to determine direction from the phase shift of the quadrature encoder output. This
happens because the counter chip is asynchronous, so a given channel divided pulse has a random phase

shift compared to the other channels signal.

This new approach demonstrated consistent results and allowed a solid base to build higher level abstrac-
tion on. Encoders by nature accumulate error, thus the raw output data will show discrepancies if not used

in conjunction with other sensors and filtering algorithms.
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Figure 3.11: Sample encoder output information for 3.5m linear run

3.3.4 Conclusion

In conclusion, the new hardware solution proved to solve the high speed sampling problem, ultimately
allowing a dependable output from the encoders. Optical encoders accumulate error over time, and therefore
without proper filtering their data will diverge eventually. Although the encoder output is adequate for our

current state, future work could be beneficial in developing a faster encoder data acquisition system.
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Chapter 4

Software Architecture

Our robot will need a suitable software architecture to help us develop the intelligence required for the
competition. A suitable architecture for Prometheus will have a high level of extensibility and modularity.
Extensibility is a measure of how easily new features can be added to the system, while modularity is the

amount which specific pieces of the software can be swapped out for others.

Modularity will be important when developing and testing different algorithms for the intelligence on
Prometheus. In order to be most productive when testing the robot, it will need to be relatively easy to
swap one algorithm in favor of another. An extensible software architecture will also ensure that it is easy
to develop new programs for Prometheus. In the future, this means that Prometheus will be able to serve

as a robust and modular research platform.

4.1 Background

Prometheus has two computers for programming: the National Instruments cRIO and the On-Board
Computer. The NI cRIO has very few options available for programming; there are virtually no alternatives
to using the VxWorks operating system that it ships with and programming the device in LabVIEW. While
NI does provide support for C, it was decided to continue using LabVIEW since much of the Prometheus
software requiring the cRIO was already written (National Instruments Corporation, 2010b). However,
because of the known difficulties in creating large, complex programs LabVIEW for the cRIO (see Table 4.1),
it was decided that the best approach to using the cRIO was to minimize the extent to which it was used for
intelligence. One the approach is to this is to to program and test the filtering algorithms in MATLAB and
then port the scripts to LabVIEW’s MathScript syntax, which is similar to MATLAB (National Instruments
Corporation, 2010a).

One of the advantages of using the On-Board Computer for a majority of the programming is that is a
typical desktop computer made from standard parts, so there are many options available for choosing an
operating system and software architecture to run the intelligence algorithms on. The remainder of this
section will explore some of the different approaches to writing software for the On-Board Computer on

Prometheus.
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e Compiling large FPGA programs takes upwards of 40 minutes, depending on the speed of
the computer. This makes testing FPGA code increasingly more difficult as the size and
complexity of the program increases.

e LabVIEW graphical interface becomes slow and occasionally freezes when working on large
projects.

e Source control cannot be performed in a meaningfully way since LabVIEW files are stored in
a binary format.

Table 4.1: Known difficulties in creating complex programs in LabVIEW for the cRIO

One approach to designing software is to place all routines in a single process. However, giving a single
process so many responsibilities makes it prone to failure. Massive processes are not modular and difficult
to extend. It is difficult to follow the program’s logic and identify discrete pieces of code responsible for
simple tasks. Also, it is difficult to make massive processes use standard streams in a coherent manner that
a helper-process could use to extend the program’s functionality (Raymond, 2004). This also means it is

difficult to write tests for massive processes since it is difficult to isolate an individual responsibilities of the

program.
Advantages Disadvantages
Single Process
g e Easy to write initially e Difficult to find memory
e Easier to share data be- leaks

tween tasks e Difficult to use standard
streams in a coherent man-

ner

e Must restart entire system
if a single task fails

Multiple Processes
P e Easy to find memory leaks e Difficult to write initially

e Fasy to use standard
streams in a coherent
manner

e Easy to restart a single task
if it fails

e Easy to debug

Table 4.2: Comparison of the advantages and disadvantages of using a single process or multiple processes
when creating software, assuming code in not intentionally obfuscated

An alternative to the massive-process model is to break the program into many small, communicating
processes, each with a single responsibility. However, to fully benefit from structuring a program in this
manner, the operating system must support inexpensive process-spawning and simple inter-process com-
munications (Raymond, 2004). Fortunately, these are both supported by Linux, and there are also many
software architectures available that aid in the process of designing and implementing such systems. For our
project, we researched several frameworks specifically designed for unmanned, robotic platforms that would

make it easy for us to implement many small, communicating processes.
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4.1.1 Joint Architecture for Unmanned Systems

The Joint Architecture for Unmanned Systems (JAUS) is an open architecture originally developed as
an initiative by the US Department of Defense and now maintained by the Society of Automotive Engineers
(SAE) (Joint Ground Robotics Enterprise, 2007). JAUS is message-based architecture, meaning that discrete
computing systems share information using an application-layer protocol. The specification is intended to
be highly configurable and interoperable between differing unmanned systems and components (Rowe &
Wagner, 2008). Unfortunately, since its transition to SAE, the new specification documents are no longer
freely available (SAE International, 2010). Older specifications remain publicly available; however, these are

no longer maintained (Joint Ground Robotics Enterprise, 2007).

The Reference Architecture Specification is one of the JAUS documents no longer being maintained (Joint
Ground Robotics Enterprise, 2007). Developed by the JAUS Working Group in the later 1990s, the reference

architecture provides a base upon which software frameworks can be written.

4.1.2 Robot Operating System

Robot Operating System (ROS) is an open source framework originally developed to meet the needs of
large-scale domestic robots developed as a part of the STAIR project at Stanford University and the Personal
Robots Program at Willow Garage (Quigley et al., 2009).

A program using ROS consists of a set of intercommunicating processes, or nodes, that each have a single
responsibility. The framework is distributed and runs using multiple processes and is designed to support
being distributed among multiple hosts. Rather than providing a single monolith process for managing the
system as a whole, ROS provides many small tools for working with the framework. The framework also

works independently of the operating system or language chosen to run it on.

In practice, ROS is implemented as a set of packages for Linux. The packages provide a set of dependencies
for compiling nodes as well as tools for debugging and diagnosing problems. At present, ROS only supports
the Ubuntu Linux distribution and the C++ and Python programming languages in its stable release (ROS,
2010).

Communications Between the On-Board Computer and the cRIO

Because there is no ROS support for LabVIEW, the cRIO and On-Board Computer will need to commu-
nicate using a very simple messaging protocol. There are two options available for this: use a single stream
for passing all types of messages, or use multiple streams running on different ports, each of which passes
a different message type. After tabulating the advantages of each method in Table 4.2 it was decided that

using a separate stream for each service was clearly the best option for network communications.

4.2 Methodology

The computer each sensor was connected to changed as a result of the decision to make the cRIO less

responsible for Prometheus’ intelligence. In the current setup, the LIDAR is connected directly to the On-
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Board Computer because it was not used by the Kalman filter. In addition, the GPS is connected to the
On-Board Computer for two reasons. First, it is easier to communicate with the sensor stream from the
On-Board Computer. Second, Prometheus’ path planner needs a method of converting GPS coordinates to
Cartesian coordinates relative to the starting position of the robot. This is easiest when the path planner,
which runs on the On-Board Computer, can send messages to another process requesting the conversion
rather than requesting the conversion over the network from the cRIO. Figure 4.1 shows an overview of the

major computing devices and sensors are connected.
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Figure 4.1: The major sensors and computing devices of Prometheus 2011. In this design, the cRIO is
primarily used for motor controls and odometry information.

After weighing the advantages and disadvantages of using JAUS or ROS (see Table 4.3), it was decided
to use ROS as the framework for our robot. The primary reason for this decision is that ROS is extensively
documented, comes packaged with a number of libraries that will be useful for Prometheus, and has a growing
community of users. Because ROS does not already have ROS packages to support JAUS, our team will
create a ROS wrapper for the Jr Middleware JAUS libraries. Jr Middleware is small API that supports the
JAUS specifications required by the IGVC JAUS challenge (Devivo AST, 2008).

One of the most useful tools that ROS provides is named “rviz.” Rviz is a robotics visualization software
that listens to ROS’ standardized messages and is capable of creating a 3D model of the robot’s perceived
environment. The tool is extremely useful for debugging robotics software because it makes it possible
to see what the robot perceives, and because ROS supports multiple hosts, a laptop can connect to the
Prometheus Wi-Fi to visualize the robot’s perceptions in real-time. Figure 4.2 shows rviz being used to
visualize Prometheus as it performs mapping indoors. ROS also provides tools for logging ROS messages,
and when used in conjunction with rviz, a history of the robot’s performance can be visualized. These tools

will prove invaluable as we test Prometheus and work to improve its intelligence.
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Figure 4.2: Rviz, a tool that is integrated with ROS, being used to visualize Prometheus as it performs
indoor mapping.
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Advantages Disadvantages

OpenJAUS
pen e Programs are split into e Small user-base

components

e Uses JAUS protocol for
passing messages between
components, a standard
that will need to be used to

compete in the IGVC JAUS
Challenge
Robot Operati
oot Lperiind e Programs are split into e Does not currently have
System (ROS)
nodes JAUS support
e Uses Simple passing mes-
sage

e Integrates with many pre-
existing open source soft-
ware packages

e Contains graphical tools for
debugging

e Large user-base, widely
used in robotics commu-
nity

Table 4.3: Comparison of the advantages and disadvantages of different robotics software frameworks that
were considered for use on Prometheus

Communications Between the On-Board Computer and the cRIO

The cRIO and On-Board Computer perform a handshake using a TCP connection before any other
actions are taken. During the handshake, the cRIO and On-Board Computer exchange information about
what ports they are using for specific services. Examples of services include the cRIO listening for velocity
commands and the On-Board Computer listening for odometry messages. After the handshake is performed,
the cRIO continues to wait for more handshake messages, and if it receives another handshake, it restarts all
of its processes to work with the new settings. The handshake was designed this way so that the robot can
continue to operate in the event that the On-Board Computer crashes. The handshake is also implemented
on both the cRIO and On-Board Computer in such a way that either device can start first, and the handshake

will be completed.

An alternative to the current handshake would be to have the handshake not send any information about
which ports are running which services. In this circumstance, each device would need to be hard-coded to
know which port to use for each service. The problem with this design is that each time a port would need
to be changed, both the software on the cRIO and On-Board Computer would need to be updated.

Another aspect of the handshake is that the cRIO determines the address of the On-Board Computer
by performing the handshake. This allows us to use a dynamic IP address for the On-Board Computer and
avoid hard-coding its IP address in the cRIO’s software. The advantage of using a dynamic IP address is that
less network configuration is necessary and tests of the cRIO’s services can be easily run from a computer
other than the On-Board Computer.

o1



On-Board Computer NI cRIO
) Start OBC network services
Start cRIO network services C

Send cRIO configuration message

Reconfigure VIs to use specified OBC port{

Receive OBC configuration message

) Reconfigure nodes to use specified cRIO ports

|
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Figure 4.3: The handshake used to send configuration information between the cRIO and On-Board
Computer. The cRIO’s IP address and handshake port are known beforehand to the On-Board Computer.
The handshake begins when the On-Board Computer sends a configuration message to the cRIO’s handshake
TCP server. The configuration message contains a series of 32-bit integers, each of which represents port
running a service on the On-Board Computer. The cRIO then replies with a similar message where each
integer represents a port running a service on the cRIO. The expected ordering of the ports in both messages
is known beforehand to both the cRIO and On-Board Computer.
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Advantages Disadvantages

Single Stream
9 e Easy to write initially e Requires headers for each

message type

e A router must be con-
structed in software to pass
messages to their appropri-
ate processes

e Creates a bottleneck on
the system that all network
data must flow through

e All processes fail if the
stream is broken

Multiple Streams
P e No headers are required, so e Difficult to write initially

data can be sent as a simple
byte steam.

e Easy to extend to more ser-
vices once written

e If a single stream breaks,
the rest of the system won’t
necessarily halt

Table 4.4: Comparison of the advantages and disadvantages of using a single process or multiple processes
when creating software, assuming code in not intentionally obfuscated

4.3 Results

The programs on the On-Board Computer are organized into several ROS packages. Each package
contains zero or more programs that can be run as individual processes, called nodes in ROS terminology.

An outline of the functionality of each ROS package implemented for this project is as follows.

crio_.comm The crio_comm package handles communications between the NI ¢RIO and the On-Board
Computer. The package uses the crio_init node to initialize the handshake with the cRIO. Once
communications is establish, the package serves as a wrapper for other nodes that need to communicate
with the cRIO. The package two kinds of nodes for communication: sources and sinks. Sources listen
to a port on the On-Board Computer for packages from the cRIO. When sources receive data, they
build a ROS message that they immediately publish. Sinks subscribe to a ROS topic and forward the
data they receive to the cRIO over the network.

The two sinks of the crio_comm package are the cmd_vel_sink and the gps_sink. These respectively
handle velocity command messages and GPS messages. Velocity commands are specified as a list of
two doubles and are forwarded to the cRIO using TCP. The first specifies the forward velocity along
the x-axis of the robot’s local frame (in other words, the speed the robot should drive), and the second
indicates the angular velocity (the radians per second the robot should turn). Because of how the

coordinate frame for the robot is defines, a positive angular rotation will turn the robot to the left.

The gps_sink uses TCP to send odometry information from the GPS to the cRIO. It receives Cartesian

coordinates in meters relative to the starting position of the robot. The coordinates are specified as a
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list of two doubles, x and y, where the x-axis points north, the y-axis points west.

The only source of the crio_comm package is the odom_source node. This package receives the position
and rotation of the robot relative to the world frame that is output by the localization algorithm
running on the cRIO. The odom_source node uses this information to broadcast a ROS odometry

message as well as a ROS transform.

local_map This package listens to laser range data from the SICK LMS and detected lines sent from the
line detection package. It then stores the data as raw measurements and periodically builds an
occupancy grid that it publishes over a ROS A more complete description of this package can be found

in Section 5.2.

path_planner This package listens to navigation commands and occupancy grid messages. It then plans a
path from the robot to the navigation goal. It then forwards this path to the motion_planner, which
converts the path into velocity commands for the cRIO. A more complete description of this package

can be found in Section 5.3.

motion_planner The motion_planner package is responsible for following paths it receives from the
path_planner. It interprets the path into linear and angular velocity commands and then sends
these commands to the crio_comm package. The motion planner stops the robot if it is veers from the

path it was assigned to follow. A more complete description of this package can be found in Section 5.3.

line_detection The line detection node processes the images from the cameras to detect line. A more

complete description of this package can be found in Section 5.4.

prometheus_teleop This package contains various code for controlling the robot, both in autonomous and
teleoperated modes. Most importantly, this package contains the send nav_command node, which reads
navigation goals from its standard input and forwards these to the path planner. This node operates
in either GPS mode or Cartesian mode. In Cartesian mode, the commands are specified as a position
in the world frame, z and y, in meters. In GPS mode, the commands are specified as longitude and

latitude, and the node uses the gps package to lookup a conversion to the world frame.

The package also contains two teleoperation nodes that are useful for testing. The first is the
send_velocity_command node, which allows the user to manually specify velocity commands at the
command line. This node is provided as a convenience for testing whether velocity commands are being
accurately handled by the cRIO. The second is the joy_control node, which allows the user to send
navigation commands using a joystick or gamepad attached to the On-Board Computer. This node is

useful for ensure the network connection between the cRIO and On-Board Computer.

In addition, the package contains virtual_odometry_server node that is used strictly for testing the
robot. This node replaces the odom_source and cmd_vel_sink nodes of the crio_comm package, to
virtually move the robot in ideal conditions. The node reads velocity commands and then periodically

publishes the odometry information that would result from following the command.

prometheus_sensors This package contains the ROS messages used for communicating with the GPS as

well as launch files for starting the LIDAR and cameras.

gps This package communicates with the GPS and reads and interprets longitude and latitude values. It

performs two functions in ROS: it serves as a broadcaster for GPS data, and it runs a GPS conversion
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service. The broadcast GPS messages are eventually sent to the cRIO by the crio_comm package’s
gps_sink node. The GPS conversion service is used by the send nav_command node for converting
GPS coordinates into Cartesian coordinates. A more complete description of this process can be found

in Section 5.2.

prometheus This package contains configuration and launch files for rviz and a launch file that starts
all nodes that are critical to perform path planning including nodes from the cRIO communication,

mapping, path planning, motion planning packages.

prometheus_description This package contains configuration and launch files that describe the physical
shape of the robot. This includes a 3D model of the robot that is useful for visualizing the robot’s
shape in rviz. In addition, the package contains a launch file that starts static transform publishers

that periodically broadcast the transforms from the robot’s base link to each of it’s sensors.

map_io This package handles input and output of ROS occupancy grids. The package contains nodes to
load and save occupancy grids using image files. The package uses the Portable Gray Map (PGM)
files, which use an image format that is designed to be easy to write programs for (Poskanzer, 2003).
The format is ideal for testing ROS maps because it can be edited in GIMP, an image editor for Linux,

and it supports a human-readable ASCII format as well.
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(a) A map being edited as an image file in GIMP  (b) Prometheus navigating on an occupancy grid loaded
from an image file.

Figure 4.4: A simulation of the robot performing navigation on a map loaded from an image file.

The map_io package also has a static_map_publisher node that is useful for integration testing. This

node loads a map from an image file and continuously broadcasts it at a specified rate.

integration_tests The integration_tests package contains various tests for ensuring the ROS packages
are communicating properly, and that the robot’s nodes are properly working together as a whole.
Most notable of these tests are the simulations, which make use of the map_io package and the

virtual odometry_server node to perform navigation on maps loaded from image files.
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4.4 Conclusion

We chose to use ROS because of its strong community support and integration with popular libraries. In
addition, we are using a multi-process architecture because this is used by ROS by default. Since ROS does
not have a library for LabVIEW communication, we created our own communication scheme. This scheme

is service based and separates the communications into multiple streams.

Communications Between the On-Board Computer and the cRIO

It is important to note that there is a flaw in the handshake from a security standpoint. The only
method the cRIO employs to check that the On-Board Computer is correct is that it checks the length of the
configuration message it receives to the expected length; if the two are not equal, it drops the connection.
While it is possible for an adversary to disable the robot by sending the correct number of bytes to the
cRIO’s handshake port, it is assumed for this project that the wireless router provides enough security with

its WPA encryption.
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Chapter 5

Intelligence

The project’s primary research focus is to enhance Prometheus’ autonomous capabilities. The intelligence
of our vehicle correlates to its ability to fuse the many different sensors on-board, generate a local map
of its surroudings, as well as plan and traverse this map to a specific goal. There are boundless ways of
implementing the different aspects of Prometheus’ intelligence. This section outlines the different approaches
our team researched, developed, and implemented to ultimately bring Prometheus to a competitive state for

the IGVC.

5.1 Sensor Fusion

Accurate localization, navigation, and mapping require the output of multiple types of sensors in order
to provide as much information about the robot’s whereabouts as possible. We are looking to implement
the sensors for localization by fusing their useful data, then calculating the state of the robot in terms of
its x position, y position, and heading. Unfortunately, each sensor has some amount of error in its returned
data. This makes the exact state of the system difficult to determine as the error accumulates, and in effect,

inaccurate. Kalman filters can help with this problem.

5.1.1 Background

There are several definitions available for the Kalman filter. A good way of summing them up is by
saying that they recursively estimate an evolving state over time. This is done by performing calculations
on measurements taken at known intervals of time during observation of that state. Kalman filters are
applicable to our robot in that it is meant to be in motion and will therefore have a constantly changing

position and heading.

The implementation of a Kalman filter has proven to be capable of minimizing error, and doing so in an
efficient manner. The consistent use of statistical measures of uncertainty makes it possible to quantitatively
evaluate the role each sensor plays in overall system performance. Further, the linear recursive nature of the
algorithm ensures that its application is simple. For these reasons, the Kalman filter has found widespread

application in many different data fusion problems. (Siciliano & Khatib, 2008). This makes the Kalman
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filter well suited for our sensor error correction and fusion needs.

The Kalman filter can be broken down into two phases: time update and measurement update. The
time update equations are responsible for projecting forward (in time) the current state and error covariance
estimates to obtain the estimates for the next time step (Welch & Bishop, 1995). In the time update phase,

the filter uses the equations below:
x(klk —1) = F(k)xz(k — 1|k — 1) + B(k)u(k) (5.1)

P(klk —1) = F(k)P(k — 1|k — 1)FT (k) + G(k)Q(k)G™ (k) (5.2)

where F(k) is the state transition matrix, B(k) is the control input model, u(k) is the odometry vector,
G (k) is the Gaussian noise, and Q(k) is the process uncertainty. Equation 5.1 represents the predicted state
of the system, while Equation 5.2 represents the error covariance of that measurement. Covariance is the
average value obtained after calculating the standard deviations of the measurements taken. Calculating the
covariance provides a good idea of how consistent the measurements affecting the system were (Siciliano &
Khatib, 2008).

During the measurement update phase, the sensor measurements are collected, or in other words, obser-
vations are made. Based on the acquired data, an update of the prediction equations takes place. To do so,
the Kalman gain (K) is computed, and then used to update the state estimate equation and error covariance
matrix. The Kalman gain is a calculated value that helps to determine the certainty of the equations. A
way of thinking about the weighting by K is that as the measurement error covariance approaches zero, the
actual measurement is “trusted” more and more, while the predicted measurement is trusted less and less

(Dyer, 2002). The equation for calculating K is:

Ky =P H'(HP,H" + R)™* (5.3)

where H is the observation matrix and R is the sensor noise matrix. An observation matrix is necessary
when the information in the state matrix does not match that of the measurement matrix. The state matrix
needs to be converted into the same units and format as the measurement matrix so that calculations can
be carried out. The sensor noise matrix contains values that can be altered in order to produce better filter

results.

When it comes to choosing a type of Kalman filter, there are two main options. The first is the standard
Kalman filter. Although its equations are simpler, and it is good for dealing with sensor error, it only works

well for linear systems.

The other option is an extended Kalman filter (EKF). This filter’s method is to apply the first-order
Taylor expansion to the system, forcing a non-linear system to be linear. The Taylor Expansion allows a way
of evaluating a function over an interval, but using only information about that function and its derivatives at
one point. This is useful for using current information to predict the next state of the system. Unfortunately,
the expansion is only capable of calculating an approximation. This can produce large prediction errors,
especially when applied to highly non-linear functions. Another downside is the need to create Jacobian
matrices, which serve to linearize the non-linear functions. Jacobian matrices can become large and in effect

slow down the system, which is why the need to create them is a disadvantage (Dyer, 2002).
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5.1.2 Methodology

We had to analyze the Kalman filter options before choosing which we would implement. Prometheus’
movements cannot always be represented by linear equations. This means that the original Kalman filter
would not be very effective in our system. After coming to this conclusion, we moved on to looking at our
non-linear filter option, the extended Kalman filter. Based on the good number of examples, explanations,
and reviews we had found of the EKF, we decided that the EKF would be an acceptable choice for the type
of Kalman filter to use for reducing the error in the calculation of the robot’s state. The first step was to
analyze the EKF equations and adapt them to our implementation. This involved altering and combining
equations found, and determining what roles our sensors would play in terms of filter inputs. Figure 5.2
depicts the general equations necessary to create this Extended Kalman Filter, as well as what phase of the

filter they are used in.

Figure 5.1 aids in visualization of how we determine the robot’s position in relation to its initial position
at 0, 0. By adding the x component of the robot’s new position to the x component of its former position,

we get the overall x position. The same can be done for the y components.
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Figure 5.1: The frame of the robot relative to the world frame. The world frame’s x-axis always points
north, it’s y-axis always points west, and its origin is always positioned at the starting position of the robot.

Since the position is determined based on past position, any error introduced by the sensors will be
accumulated. This is where the Extended Kalman filter comes into play. We created two separate Kalman
filters. One (referred to as filter 1) is applied to the raw encoder and IMU data, while the other (referred to as
filter 2) is applied to the raw DGPS and IMU data. The encoders provide the velocities of the left and right
wheels in meters per second, the IMU provides the heading of the robot in degrees, and the DGPS provides
the location of the robot in Cartesian coordinates measured in meters. We chose to apply our sensor data to
two separate filters because it allowed for modular testing. We could observe the results being obtained from
one filter and alter it, and then do the same to the other. This also allowed for filter implementation during
autonomous runs even when the GPS was experiencing interference or the encoders were being unreliable.
Later in the paper we will discuss how the data from these two filters was fused to produce one overall state.

These filters’ odometry vectors (state of the robot) are of the form:

T
z= [x Y 0} (5.4)
This means we are looking to get the robot’s x position, y position, and heading based on the data
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Figure 5.2: Operation of the extended Kalman filter. Image courtesy of Welch & Bishop (1995)

provided by the sensors. The following is a breakdown of the equations used in our extended Kalman filters.

1. Average Velocity. Filter 1: Use the values from the left (Iv) and right (rv) wheel encoders to calculate

the average velocity (av) of the robot. Filter 2: No need to calculate the average velocity.

lv+rv
2

avy = (5.5)

2. Translational Displacement. Filter 1: Use the average velocity and the amount of time between sensor
readings (At) to calculate the translational displacement (d_t) of the robot (distance travelled). Filter

2: Perform the Pythagorean Theorem on the change in x and y position.

d_t; = av * Atime (5.6)
dty =/(x2 — 21)2 + (y2 — 11)? (5.7)
3. Time Update: Project the State Forward
o
= = |yT (5.8)
ot

Calculate the new values of x, y, and theta. This is done by adding the change in x and y to the former
values of x and y. Since the IMU is significantly more accurate than the encoders it is better to obtain
the new heading (6) by taking the reading from the IMU, rather than calculating it with the encoders.

2T =z +d_t * cos(d) (5.9)



yt =y +dtxsin() (5.10)

0 =0 (5.11)

4. Jacobians. The state equation then needs to be linearized, so we must compute the Jacobians for use
in part 2 of the Time Update phase.

1 0 —dtxsin(6)
A=10 1 dtx*cos(d) (5.12)
0 0 1
cos(0) —d_t x sin(0)
B = |sin(0) d._txcos(9) (5.13)
0 1

cos(oldheading) x Atime 0
W = | sin(oldheading) * Atime 0 (5.14)
0 Atime

5. Covariance. The covariance (P) during the time update phase is calculated as follows:

P =AxPxA +Q (5.15)

Covariance is the past covariance, and Q is a three by three process noise matrix with values in the
1,1; 2,2; 3,3 positions. These values are obtained through testing and can be altered for different

performance from the filter.
6. State Update: Update the State with Measurements

7. Measurement Matrix (z). A measurement matrix must be created. Filter 1: We are measuring the
left wheel velocity, right wheel velocity, and robot heading. Filter 2: We are measuring the robot’s x

position (gps_z), y position (gps_y), and heading.
z1 = |rv (5.16)

gps_x
2o = | gpsy (5.17)
0

8. Measurement Observation Matrix. A measurement observation matrix must be created. This matrix

is used to convert the odometry vector values into the same form as the measurement matrix.
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H=| 0 L 0 (5.18)

0 0
10 (5.19)
0 1

9. Sensor Noise. Sensor noise must be introduced. This is represented by a three by three R matrix with

values in the same positions as the Q matrix. These can also be altered to change filter performance.

10. Kalman Gain.

P xH

K= H+P H R (5.20)

11. Update the state and covariance.
x=z" +K(z—Hxxz") (5.21)
P=(eye(3) — K« H)x P~ (5.22)

What is now present is an x matrix containing the x, y, and heading components of the filtered states.
These values are used to represent the position of the robot, and are looped back into the filter for its

continued implementation.

Each filter has varying levels of accuracy which can change at any given time. This makes it desirable to
be able to change which filter output is being relied upon. Equation 5.23 can be used to weight each state
based on its covariance. The lower the error involved in a state’s estimation, the more that state is weighted

and trusted in its contribution to determining the overall state (Drolet et al., 2000).

Py n P
T19 = T x
b2 P+ P ! P+ P ?

(5.23)

The filtered state of the robot is in relation to its starting position (0, 0). However, the waypoint
navigation challenge provides us with waypoints in terms of latitude and longitude in the world frame. This
means that in order for the filtered output to be useful, the latitudes and longitudes must be converted to

Cartesian coordinates. This conversion is detailed in the World Representation chapter.

The GPS receiver was necessary to bridge the gap between Cartesian coordinates and latitude and
longitude. The way we dealt with this challenge was by converting all of the given waypoints from latitude,
longitude, to local x, y coordinates. We then use the GPS receiver to provide us with the latitude and
longitude of the robot’s initial position. This location is then converted to Cartesian coordinates, and

subtracted from all of the waypoint coordinates to make all values in the same frame.
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5.1.3 Results
Filter 1-Encoders and IMU

Our first positive results were obtained on February 28, 2011. A LabVIEW vi was made that allowed for
the live plotting of the robot’s position as it travelled. Figure 5.3 shows the data obtained while driving the

robot forward and then beginning to take a ninety degree turn.

The yellow plot represents the path calculated with raw data from the encoders only. Since this path
did not include the IMU, the initial heading is zero, whereas IMU inclusive data has an initial heading of
whatever the IMU is giving at the start. The light blue plot represents the path calculated with the raw
data from the encoders, as well as the IMU. Its Cartesian coordinates (in meters) at the end of data logging
are contained in the light blue box. The green plot represents the path calculated by our EKF. This plot
indicated progress in that it was producing a shape similar to the raw data, with the offset likely being

attributed to error correction. Its Cartesian coordinates at the end of data logging are contained in the

green box.
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Figure 5.3: LabVIEW Logging of Raw and Filtered Path from Sensor Data

Additional testing was done in a way that allowed us to observe the paths being calculated over a longer
range of time. LabVIEW code was written to perform live logging to a text file of the Cartesian coordinates
being calculated by the raw encoder and IMU data, as well as the EKF. We then drove the robot for two
laps around the main hallways of the first floor of Atwater Kent. (It is important to note that at the
beginning of logging the laps, some raw data was still present from past testing, and therefore offset the
starting coordinates of the raw data representation). Figure 5.4 is a Matlab plot of the Cartesian coordinates
calculated with the raw encoder and IMU data, as well as those calculated by the EKF.

The red plot represents the raw data and the blue represents the filtered data. It can be observed in the

raw data that the second lap was offset from the first, an indication of error accumulation. The filtered data
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Figure 5.4: LabVIEW Logging of Raw and Filtered Path from Sensor Data

shows the second lap to be much more in line with the first lap, an indication that the filter was reducing
the error accumulation. We obtained these results while using an R noise value matrix of [.0001 0 0; 0 .0001

0; 0 0 .000001], and Q and starting covariance matrices of zeros.

Once we knew our filter was accomplishing error reduction we moved on to improving its accuracy in
estimating distances traveled. We drove the robot along a generally straight path and marked its starting
and ending points. The distance traveled was measured with a tape measure. We then plotted the logged
raw and filtered data in Matlab to observe the path calculated. By using Matlab’s cursor feature we were
able to determine the starting and ending coordinates of the plots. Equation 5.24 was used to calculate the

distance travelled according to the raw data and filter plots.

distance = \/(xy — 1) + (y2 — y1)2 (5.24)

By comparing the raw distance versus the actual distance and the filtered distance versus the actual
distance, we could determine which was closer and alter the noise and starting covariance values to improve

the filter’s performance. Table 5.1 summarizes the results.
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Actual Mode Filtered Raw Dif- | R Noise Matrix Starting Covari-

Distance Difference ference ance

(meters) (meters) (meters)

7.62 Controlled 1.0882 0.24 0 [0.0001, 0.0001,

0.000001]

7.62 Controlled 3.576 1.39 [0.0001, [0.0001, | [0.0001, 0.0001,
0.000001] 0.000001]

7.62 Controlled 0.085877 0.386059 [0.001, 0.001, | [0.0001, 0.0001,
0.00000001] 0.000001]

3.070225 Autonomous | -1.51178 -1.27178 [0.001, 0.001, | [0.0001, 0.0001,
0.00000001] 0.000001]

6.00075 Autonomous | -1.29025 -1.18597 [0.001, 0.001, | [0.0001, 0.0001,
0.00000001] 0.000001]

4.0767 Autonomous | -1.3793 N/A [0.00001, 0.00001, | [0.00001, 0.00001,
.000000001] 0.000000001]

3.54965 Autonomous | -1.30735 1.57135 [0.01, 0.01, | [0.00001, 0.00001,
0.000000001] 0.000000001]

3.76555 Autonomous | -1.47645 -1.33845 [0.015, 0.015, | [0.00001, 0.00001,
0.000000001] 0.000000001]

3.641725 Autonomous | -1.21928 -1.43128 [0.015, 0.015, | [0.015, 0.015,
0.000000001] 0.000000001]

5.27685 Autonomous | -1.52815 -2.32215 [0.015, 0.015, | [0.015, 0.015,
0.000000001] 0.000000001]

5.2959 Autonomous | -1.6131 -2.5351 [0.1, 0.1, | [0.1, 0.1,
0.000000001] 0.000000001]

4.81965 Autonomous | -0.83035 -1.19935 [1.01, 1.01, O] [1.01, 1.01, 0]

47371 Autonomous | -0.8839 “1.3769 [1.001, 1.001, 0] [1.001, 1.001, 0]

Table 5.1: Distance tests for the encoder and IMU filter (Filter 1) based on R and starting covariance

5.1.4 Conclusion

Based on the testing of filter 1 (encoders and IMU) and observations made about filter 2 (GPS and IMU),

conclusions were made about their performance, and future work has been suggested.

Filter 1-Encoders and IMU

The best results obtained while manually driving the robot were filtered values within 0.086 meters of
the measured distance, approximately 0.3 meters better than the raw data. When programming the robot
to autonomously drive a set distance, the best results were filtered values within 0.83 meters, approximately
0.35 meters better than the raw data. Referring to the table can give general guidelines for what range of

values to stay within when altering the noise and covariance matrices.

Filter 2-GPS and IMU

We have hypothesized that filter 2 was not producing results because of the way LabVIEW interprets

data types. When determining the translational displacement, a square root calculation is performed. Even
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though the values inside of the square root are guaranteed to be positive (due to the squaring of the change

in distance), LabVIEW converts the result to complex number format.

Future Work

Further work could be done to improve the overall performance of the filter. Now that a range of
acceptable noise values has been established, testing within those ranges could produce more accurate results.
If a solution to the GPS/IMU filter problem can be found, testing of good noise values can be determined
in the same way as those of the encoder/IMU filter. Once both filters are producing acceptable results,
equation 5.23 can be applied, and observations can be made as to whether or not the weighted overall state

is more accurate than either individual filter.

Another area of research to pursue involves a different way of combining the data from the three sensors.
This involves using only one filter, eliminating the need to have a sensor fusion algorithm. This type of

implementation would require additional research.

5.2 World Representation

To effectively compete in the Intelligent Ground Vehicle Competition, Prometheus will need to relate its
position to the positions of nearby obstacles. This is necessary for both detecting obstacles and navigating
the robot around these obstacles. A common method of doing this is to create a map that estimates the
actual state of obstacles in the world. In this chapter, the different techniques for creating probability maps

as well as the final implementation used on Prometheus will be discussed.

5.2.1 Background

One approach to creating a probability map is position the map at the origin of the robot’s coordinate
frame. As the robot moves in the world, it updates the expected position of objects it previously observed
in the world. Then, the robot reinforces the probability of objects in its map when it observes these objects

again in its new position.

Another approach is to create a map that is positioned in its own frame that is relative to the world
reference frame. Since the map will grow large, and the robot’s sensors will always have some error, it
will also be necessary to estimate the location of the robot within the map. This problem is known as
the simultaneous localization and mapping (SLAM) problem. The SLAM problem has been the focus of
much intensive research in the past twenty years, and it is often considered a solved problem in static

environments (Frese, 2010).

Most SLAM implementations use Kalman filters to perform localization by observing landmarks. Unfor-
tunately, the complexity of using a Kalman filter grows polynomially with the number of landmarks (Monte-
merlo et al., 2002). Because of this, many alternative methods of performing localization for SLAM problem
have been subject to thorough investigation in recent years. One alternative is the particle filter, of which a
Rao-Blackwellized particle filter is available for ROS. This implementation of SLAM, known as GMapping,

is very easy to interface with, and provided us with a good reference point for the capabilities of robotic
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mapping.

A related problem to world representation is determining the coordinate conversions between the world
representation and the actual world. Whether the map is chosen to be fixed to the robot’s reference frame or
the map is placed at a fixed point in the world, the location of the robot must be constantly updated. The
most commonly known method to refer to a specific location in the world is to use latitudes and longitudes,
which is an angular measurement system that is relative to a constant location (usually the Royal Observatory
in Greenwich, England). However, there are alternative methods of reference that lend themselves better to
our purposes. One significant problem with the geographic latitude and longitude system is that it employs
a single projection for the whole Earth, with poses a problem of accuracy. It is difficult to come up with
a single simple and accurate projection because the shape of the Earth is shaped irregularly and thus if a
projection is made more accurate in one portion of the FEarth it is likely to become more inaccurate in other
portions. Another problem with geographic latitude and longitude is that calculating the distance between
two points can not be done through simple subtraction and instead must be performed trigonometrically. An
alternative method of reference is the Universal Transverse Mercator (UTM) system that divides the world
into 60 different zones, each with its own projection, and in which two point references may be subtracted

to find their relative distance.

Finally, there are many different geodesic datums [sic] that describe a set of points that describe a surface
that can be used as a reference to describe other unknown points. To account for shifting tectonic plates
and other such geographical changes, these datums are sometimes updated, and different datums are used
to describe different regions of the world. Common datums include the North American Datum (NAD) 27,
NADS83, the World Geodetic System (WGS) 83 and the International Terrestrial Reference Frame (ITRF)
2000. In applications, the datums from different sources of data must match or must be converted to match

to ensure that the results are correct and accurate.

5.2.2 Methodology

Table 5.2 shows a comparison between the two approaches that were researched for estimating the world
state in a probability map. Because neither option appears to be clearly favored over the other, it was decided
that each method should be further investigated. While there are many open-source implementations of
SLAM available (see Stachniss et al. (2010)), it was decided to first experiment with GMapping because
it already has wrappers provided by ROS. GMapping is an open source SLAM implementation using Rao-
Blackwellized particle filters. By using the LIDAR and only the encoders for odometry information, it was
possible to create a map of the floor plan of a building (see Figure 5.5). The robot encountered the most
error during tight turns, and as can be seen in the figure, GMapping was unable to close the cycle and

identify that the robot had returned to its starting location.

While GMapping performed quite well indoors given only encoder data, it was still necessary to test the
algorithm outdoors where there are less landmarks. After running tests with Prometheus running GMapping
in an outdoor environment (see Figure 5.6(b)), it appeared that either 1) the data was insufficient to build

a complete map, or 2) the implementation of SLAM was not able to make use of this data properly.

After some deliberation, it was decided that SLAM was unnecessary for the competition. In most of the
events, the robot will rarely need to return to locations it had explored earlier, and even if this were the

case, the slight speed increase that may be gained does not seem to adequately compensate for the extra
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Advantages Disadvantages

Map  fized to

robot’s local e Because the map is smaller e Robot can only make short
frame (Local and landmarks are forgot- term path-planning deci-
Map) ten, calculations can be sions using the data

performed faster

Map relative to

o If performed properly, the e Calculations take longer
world (SLAM) robot will be able to nav- given that all landmarks are
igate regions it has al- stored
ready visited at an in- e More difficult to implement
creased speed. than the alternatives

Table 5.2: Comparison of the advantages and disadvantages of using a small, local map positioned relative
to the robot versus a large scale map positioned relative to the world frame.

processing required to store a large map.

Prometheus creates a local map of its environment that is fixed to the origin of its local frame. Laser
measurements and detected lines are stored in the program as a list of continuous points. The points are
later used to build a grid map that is broadcast using a ROS nav_msgs/0OccupancyGrid message. The reason
for storing measurements in a continuous format rather than immediately converting them to discrete grid
cells is that it preserves more accuracy from each measurement. In addition, the map moves relative to the
robot, so there needs to be a mechanism for determining when a measurement has moved from one grid cell
to another. This is easiest to do when using continuous points because we can transform the measurement

from its old location to its new location and then convert the point to a grid cell.

The width, height, and resolution of the map are all configurable when starting the program. In ad-
dition, parameters are available for configuring when points expire. These include the maximum age of a
measurement and the maximum distance a measurement can be from the robot. In addition, a parameter is

available to restrict the total number of measurements so that the list does not grow too large.

Program design

The ROS package for building the local map this is named local map, and it was implemented from
scratch as part of this project. The main entry point of the map creation process is the LocalMapRosWrapper
class. This class is mainly responsible for receiving measurements and publishing the map as a ROS message.
All measurements are originally generated by other ROS packages and published as a ROS messages. The
LocalMapRosWrapper uses different callbacks for each type of measurement, so when it receives a measure-
ment, it knows what type it is and how it should be stored. Each type of measurement is a subclass of the
Measurement class, which records the time and pose of the robot when a measurement was taken as well
as the measurement’s priority. Measurements are eventually used to build an OccupancyGrid object, which
stores the two-dimensional map as a list of integers. The integers represent a cell’s occupancy, which can
range inclusively from 0 (unoccupied) to 100 (occupied). In addition, a value of -1 means the occupancy
of the cell is unknown. This format for storing occupancy was chosen because it is compatible with ROS’s

nav_msgs/0OccupancyGrid message, which is necessary to use for visualizing the map in rviz. For conve-
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Figure 5.5: Map created using GMapping on Prometheus using LIDAR for range data and encoders for

odometry information. This test was performed using teleoperation to naviagate Prometheus on the first
floor of Atwater Kent Laboratories at WPI.

(a) Actual configuration of obstacle course.

(b) Map created of outdoor obstacle

course using GMapping with LIDAR and
encoders.

Figure 5.6: Comparison of a picture of the environment and an estimation of the environment state using

GMapping with LIDAR and encoders in an outdoor environment. This test was performed using the same
techniques as in Figure 5.5 in a different environment.
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nience, GridCell objects are used to access cells of the OccupancyGrid. These objects simply store the row
and column as integers, but they are used extensively for referring to specific locations of the map. The
OccupancyGrid also contains a MapDescription object, which stores the resolution of the map in meters per
cell as well as It is important to note that the width and height of the map should always be odd numbers

so that the robot’s local frame is always positioned at the center of a grid cell.

Measurement

& btTransform robot_pose

& ptime measurement_time

@ const int priority

= virtual bool hasExpired() const = 0

== virtual void addDataToOccupancyGrid() const = 0

= btVector3 calculateCurrentMeasurementLocation()

LaserMeasurement LineMeasurement

= bool hasExpired() const = bool hasExpired() const
= void addDataToOccupancyGrid() const = void addDataToOccupancyGrid() const

Figure 5.7: Class diagram of different Measurement objects.

The TargetCollection class is used to store the measurements for drawing on the OccupancyGrid.
This class disposes of measurements when they have expired or there are too many, and it iterates through
measurements in a specific order to create the map. Measurements with a higher priority are always drawn on
the map last. In the current implementation, only two priorities are used, and laser measurements are always
given a lower priority than line measurements. This is laser measurements draw a line of sight from the
robot’s position to the detected object. If laser measurements were to be drawn after line measurements, they
would sometimes overwrite the line measurements, making the lines disappear on the local map. Details
of how a measurement should be painted on the OccupancyGrid as well as when they have expired are
delegated to subclasses. In addition, the OccupancyGrid is always built using a MapBuilder object. The
MapBuilder contains functionality for incrementing and decrementing the probability of an object occupying

a given GridCell.

The LineMeasurement is simply stored at two points, and is drawn on the map by using Bresenham’s
line algorithm to drawn a line of occupancy between them. A LineMeasurement expires when it is older
than the maximum age for a Measurement or when both of its points have gone out of range of the map.
The LaserMeasurement raises the probability of the cell of the detected object and also draws a line of sight
from the robot’s position to the point. A margin is added between the last points of the line of sight and the
obstacle so that future measurements of the obstacle, which are likely to be slightly different, do not erase
the obstacle with their line of sights. When the LocalMapRosWrapper handles a measurement message, it

stores it in the TargetCollection and then immediately constructs and publishes an updated LocalMap.

Local to World Frame Conversions

As mentioned in the Background section, the UTM system is more suitable for our needs thus it was
required that our input from the Trimble AG252 GPS receiver be converted into UTM Grid Coordinates.
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TargetCollection

const float max_range

const float timeout

const int max_size

map<int, list<Measurement*> > measurements

Measurement

@———— 2 const int priority

& btTransform robot_pose
& ptime measurement_time

LPLIbDDLDLD

void purgeMeasurements()
void addNewMeasurement()

= virtual bool hasExpired() const = 0
= virtual void addDataToOccupancyGrid() const = 0
= btVector3 calculateCurrentMeasurementLocation()

MapBuilder

MapDescription map_description
OccupancyGrid occupancy_grid

OccupancyGrid buildOccupancyGrid()
void incrementProbability()

void decrementProbability()

void addLineOfSight()

LbLbLL|DbD

GridCell

& inti
a int j

OccupancyGrid

MapDescription map_description
vector<int8_t> data

bbb

MapDescription
float resolution

int8_t get()
bool set()
void clear()

bbb

int X_size
int y_size

bbb

Figure 5.8: Class diagram of the core classes of the local map package.
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To perform this operation, a long series of transformations must be performed, as described in (Dutch,
2003). However, the transformations themselves are complicated and even minor rounding errors are likely
to cause a large discrepancy in the results. For this reason, it was decided that the open source Geospa-
tial Data Abstraction Library (Open Source Geospatial Foundation, 2011) would be used to perform the

transformations.

As mentioned in (Trimble, 2004), the OmniStar HP corrections service for the AG252 publishes data
using the ITRF2000 datums. GDAL does not currently support ITRF2000. However, as mentioned in
(Institut Geographique National, 2007), newer realizations of the de-facto WGS84 datums used for UTM are
coincident with the ITRF at the 10 cm level. This presents a negligible source of error, even more so since
our local map measurements are relative measurements instead of absolute ones. In other words, as long as

all the points of reference are shifted uniformly, there will be no error in the local frame.

One quirk with using UTM coordinates is that since each zone uses different projections, two points very
close to each other but on different sides of a grid boundary will have a ”jump” between coordinate values.
For this reason, it was decided that since the operational range of the robot is relatively small compared to
the grid sizes, the grid zone would be determined during system initialization and the same grid zone would

be used throughout.

A ROS node was implemented in Python that uses GDAL to both stream current local map coordinate
data and also provide a service that does conversions from arbitrary latitude longitude pairs to local map
coordinates. The GPSd library was used to handle the low-level parsing of the raw GPS data for its robust
autoconfiguration abilities and ease of use (GPSd, 2011).

A final caveat concerning the current GPS is that as explained in (Trimble, 2004), the OmniStar HP
corrections service converges to the advertised 10 cm level accuracy only after a period of 30 minutes. This is
usually because the almanac data that contains information on satellite statuses and orbits are transmitted
approximately every 13 minutes (Mehaffey, 1999). If the beginning of the signal is missed, the device must
wait for the next signal and listen to it until it ends, which adds up to around 30 minutes total. The
autoseed feature of the AG252 mitigates this issue partially by storing the old ephemeris and almanac data
on powerdown so that at least a partial fix may be acquired immediately (or a full one if the last run of the
device was very recent) and all the information does not need to be re-acquired from scratch. As a result,
the GPS receiver converges faster if used recently, and thus it is a good idea to let the device converge before

competition times.

5.2.3 Results

As expected, accurate odometry data is necessary to build a coherent map using the technique outlined
above. In testing, it was found that poor odometry data would cause the map to smear as the same static
obstacle would continuously be measured at a different location as the robot moved. To mitigate the smearing
effect, the laser measurements are expired and are deleted at different times depending on their location.
Laser measurements that are in front of the LIDAR sensor expire very quickly because they are likely to
be observed during the next scan. However, once a laser measurement moves behind the LIDAR sensor, it
takes much longer to expire. This is done because laser measurements behind the robot will likely not be

observed again, but are still necessary to help the robot avoid brushing the sides of obstacles.
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(a) Local map without line of sight drawn (b) Local map with line of sight drawn to (c¢) Local map using a 2.5 second timeout
to the obstacles. the obstacles. for measurements that are in front of the
LIDAR.

Figure 5.9: The progression of the techniques used for creating the local map from LIDAR data. All
techniques used a maximum age of 10 seconds for the LIDAR measurements.

The local map program also performed considerably well on maps of varying resolutions. The main factor
that would cause the program to slow down was the number of measurements stored in memory. It was
determined that the program started to slow down significantly after about 10,000 measurements. For this
reason, the number of measurements is currently limited to 10,000. If the TargetCollection is full, the

oldest measurements are deleted to make room for new measurements.

5.2.4 Conclusion

The local map that was implemented and used for the robot performed satisfactorily during the outdoor
tests. However, it still suffers from issues with smearing. When performing path planning, the robot would
occasionally freeze in free, open areas before continuing on its path. This was not due to the path planner
taking a long time to compute, but instead due to false positives on the map that were the result of smearing.
The robot would remain stationary until the false measurements timed out, and the robot could again find
a path that was drivable. In theory, the map should perform perfectly with ideal odometry data. However,
since the odometry error will always have some error, this cannot be relied on. One approach to create a

more accurate map would be to add filtering to the measurements.

5.3 Path Planning

Prometheus will need to perform path planning in two stages. First, before the competition, the robot
needs to determine the order in which it will visit each waypoint. Next, after Prometheus has observed and
created a map of its environment, it will need to make use of a control policy that provides a mapping from
the robot’s state observation to motions (Thrun et al., 2005). The control policy for Prometheus’ itself will
occur in two steps: path planning and motion planning. In path planning, robot uses the local map to plan
a path to its next waypoint that avoids obstacles. In motion planning, the robot calculates the linear and

angular velocities required to make the robot follow this path.
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5.3.1 Background

One method of planning the best path on a grid is by using the A* search algorithm. A* is a variant of
Dijkstra’s algorithm, which is used to find the best path between two vertices in a graph. The A* algorithm
improves the performance of Dijkstra’s algorithm by using a heuristic to make a best guess at the distance
from any vertex to the goal. If the heuristic always guesses a cost that is less than or equal to the actual
cost, it is said to be admissible, and A* will always find a best path to the goal. When using a heuristic
that is not admissible, the running time of A*  but it is no longer guaranteed to find the best path (Russell
& Norvig, 2010).

One disadvantage of A* is it has a somewhat large running time. In addition, the paths it generates
are often jagged and difficult to follow. Figure 5.10 shows one of the common issues of A*, which is that
it typically plans paths that move along edges that are aligned in the graph. These are best path’s in the
graph, but when translates to the actual world, a best path would be a diagonal from the starting position

to the goal.

Figure 5.10: Paths generated with A* usually do no follow a straight line from the source to the destination
even when all cells are marked as unoccupied.

Another method of planning paths that avoids obstacles is by generating a set of arced paths originating
from the robot’s turning center. This method generally used for large, outdoor vehicles and has been
effectively used by a number of competitors in the DARPA grand challenge (von Hundelshausen et al.,
2008). One advantage of this technique is that the paths are extremely easy to follow. Each arced path can
be summarized by two motion commands: a linear velocity and an angular velocity. Odometry information
can be monitored, and a second motion command, telling the robot to stop, can be issued as soon as the

robot nears the end of its path.

Once a set of arced paths is generated, each path must be evaluated for drivability. There are several
methods of doing this, but in general most methods should take into account 1) the obstacles that the robot
will encounter when driving on the given path, and 2) how much following the path will help the robot reach

its destination.

In both path planning techniques outlined above, the robot’s width will need to be accounted for. One
method of accounting for the robot’s width is by performing inflation, which creates a copy of the local map

in which the size of each obstacle as expanded to consume addition space. The idea behind this is that the
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robot is approximated as a circle about its turning center, the diameter of which is the distance from the
turning center to the furthest point on the robot’s base. Using this the robot will then be able to follow any

path that is planned through the inflated map assuming that its base link always follows the path perfectly.

Another method of considering the robot’s width is by calculating the cells that the robot will overlap
when driving on a given path. This technique is difficult to implement for certain paths, but for simple arced
paths, only the inner and outer radius of the path must be determined. The inside cells of the path can then

be filled using a flood-fill or similar algorithm.

5.3.2 Methodology

The first algorithm implemented for path planning was tentacles because of its known effectiveness in
avoiding obstacles. In addition, the algorithm creates paths that are extremely easy to generate velocity
commands for. The first step for implementing tentacle following was to generate the arced paths. It was
decided to represent the arc of the tentacle in an ArcedPath object that stores the radius, length, and a list of
points located relative to the robot that make up the path. The ArcedPath’s are also grouped together into
TentacleSpeedSet objects. The equations from von Hundelshausen et al. (2008) were used for determining
the radius and length of each tentacle for each speed set. The parameters to the equation were modified to
generate speed sets with very short lengths and a variety of turning radii. The arced paths for one of the

speed sets is shown in 5.11.

Figure 5.11: The arced paths that are part of one of Prometheus’ speed sets

After generating the arced paths for a speed set, each tentacle needed to be evaluated for its drivability.
Because the local map is represented as an occupancy grid, the evaluation method would need to convert
tentacles to grid cells at some stage. Converting the continuous points of the tentacle to grid cells is a
relatively simple problem, but accounting for the robot’s width when evaluating arced paths would be more
difficult. One option for doing this would be by performing inflation of the local map and then looking up the
corresponding cell for each point on the arced path. However, this method would prove to be problematic for
Prometheus because its turning center is approximately one meter from the further point on its base. Thus,
the robot would approximate itself as two meters in diameter, and the robot would be unable to navigate
between obstacles that are separated less than two meters from each other. Because of these disadvantages,
each tentacle was instead inflated to account for the width of the robot. This extra padding around each

tentacle is known as the classification area (von Hundelshausen et al., 2008).

To inflate each arced path, a list of points for the inner and outer radius is generated. These radius
are simply the radii that are generated by the left and right edges of the robot as it follows the arced path.

Because of Prometheus’ semi-triangular shape, we were able to assume that the radius of the inner and outer

75



edges of the classification area were equal to radiuSientacie - % For added precautions, a margin
was added to the inner and outer radii. This added margin made the tentacle’s width more similar to the
support area described in 5.11 with the exception that cells that fell outside of the classification area were
not weighted less than those inside it. After the points for the inner and outer radii are generated, each of
the points is converted to a grid cell, and then Bresenham’s line algorithm is used to connect each of the cells
to create an outline that traces the inner radius and the outer radius and connects both of their end points
together. Following this, a point from the center of the arced path is selected, and a flood-fill algorithm is
run to fill in each of the grid cells of the boundary. An image of the grid cells for an arced path is shown in
Figure 5.12.

Figure 5.12: The inflated grid cells of an arced path. These cells account for the width of the robot, and
can be overlaid on the local map to evaluate the drivability of a path

The actual algorithm for calculating the points on the inner and outer radii is show in Figure 5.13. One
nice aspect of calculating the classification area in this manner is that the technique can be applied to other
types of arced path as well. For example, if a tentacle algorithm were used where the arcs were replaced by
Euler spirals, then the same algorithm should be able to also determine the classification area of the paths

created by Euler spirals.

Algorithm GenerateClassificationArea

Input: A list, Lpap, of vectors on the path, and the width of the robot, W

Output: A list, Leassification—pairs, Of pairs of vectors that are the borders for the classification area of
path

1. Lclassificationfpairs (_(Z)
2. for vy in Lpgn
(* For each vy, calculate v, the vector from the last point on the path to the vy *)
3. do v <—pi — pr_1
4. Vdisplacement <V rotated § radians about the z-axis
d. Udisplacement <_/Uclisplacement normalized
6. Udisplacement <_Udisplacement * 5
7. insert (Uk + Udisplacement, Uk — Udisplacement) into Lclassification—pairs
8. return Lclassification—pairs

Figure 5.13: Algorithm for determining the edges of the classification area of a path.
Once the grid cells have been generated, they can be overlaid on the map to evaluate each arced path.

To compare different paths, a rating scheme was used where 0 meant a path was undrivable, and 1 meant

a path was drivable and highly favorable. The rated score of any path was to fall inclusively between these
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two numbers. For simplicity, a polarized evaluation function was created that only returned either a 0 or 1.
After some experimenting, we also implemented a linear evaluation function that determined a paths scored

based on the percent of cells marked as occupied on the map.

Both choosing a tentacle that does not collide with an obstacle and choose one that will eventually lead
to the goal are equally important. However, mixing these two operations into one evaluation function could
be dangerous, because if tuned incorrectly, a path hits obstacles to reach the goal may be rated higher than
a path that takes a long route around the obstacles. For this reason, it was decided to separate the tentacle
evaluation functions, which determined the scores of tentacles based on the local map, from the tentacle
choosing function, which choose which of the rated arced path to drive on. As part of our experimentation,
we implemented path choosing functions that simply avoided obstacles in addition to functions that took
the goal into account. The most complicated of these is the A* tentacle choosing function, which ultimately

is the central workings of the A*-tentacle hybrid currently used on Prometheus.

Figure 5.14: Tentacle planning and A* path planning being used together to drive to a goal. The drivable
arced paths are shown in green and the undrivable ones are in red. The best path as planned by A* is drawn
in blue. Prometheus uses A* to choose which drivable arced path to follow. The dark green grid cells show
the cells that the robot will drive through as it follows its chosen arced path.

The A* chooser function works by first using the A* algorithm to calculate the best path from the robot
to the goal. To use A* on the occupancy grid, each cell is treated as a vertex in a graph. Cells that are
considered to be occupied by an obstacle are not included in this graph. Diagonal movements between cells
are allowed, so each vertex has up to eight edges connecting it to its neighboring vertices. Because A* is
normally able to calculate a best path through a small opening between obstacles that the robot cannot
